
ARTICLES
https://doi.org/10.1038/s41587-019-0072-8

1Department of Computer Science and Engineering, University of California, San Diego, CA, USA. 2Graduate Program in Bioinformatics and Systems 
Biology, University of California, San Diego, CA, USA. 3Research School of Computer Science, Australian National University, Canberra, Australian Capital 
Territory, Australia. *e-mail: ppevzner@ucsd.edu

Genome assembly is the process of reconstructing genomes 
from DNA sequence reads. In repetitive regions of the 
genome, accurately assembling short reads is challenging 

and can lead to inaccurate or unresolved assemblies. Single mol-
ecule sequencing (SMS) long-read technologies (such as Pacific 
Biosciences and Oxford Nanopore) have been used to improve the 
resolution of repetitive genomic regions, but many long stretches 
of repetitive DNA remain intractable to these approaches. Current 
SMS assemblers, such as PBcR1–3, Falcon4, Miniasm5, ABruijn6, 
HINGE7, Canu8, and Marvel9, have been used to successfully resolve 
some repeat regions across complex genomes, but correct assembly 
of long reads in long and highly repetitive genomic regions remains 
challenging. As a result, long-read technologies are often comple-
mented by proximity ligation techniques (Hi-C)10 and optical11 
mapping data to improve the contiguity of assemblies.

The de Bruijn graph has been used by short-read assembly 
approaches to represent genomic repeats as a repeat graph. Previous 
studies have demonstrated the value of this approach for improv-
ing the accuracy of genome assembly12. Recently, long-read assem-
blers such as ABruijn6 and HINGE7, which capitalize on a similar 
de Bruijn graph-based approach, have been developed. Most short-
read assemblers construct the de Bruijn graph based on all k-mers 
in reads and further transform it into a simpler de Bruijn assem-
bly graph13. This approach collapses multiple instances of the same 
repeat into a single path in the assembly graph and represents the 
genome as a genome tour, which visits each edge in the assembly 
graph. However, in the case of SMS reads, the key assumption of 
the de Bruijn graph approach—that most k-mers from the genome 
are preserved in multiple reads—does not hold. As a result, various 
challenges that have been addressed for short-read assembly, such 
as how to deal with the fragmented de Bruijn graph and how to 
transform it into an assembly graph, remain largely unaddressed in 
long-read assemblers.

Here we describe the Flye algorithm for accurately assembling 
long reads (Fig. 1). Unlike existing assemblers that attempt to gen-
erate contigs, Flye initially generates disjointigs that represent con-
catenations of multiple disjoint genomic segments, concatenates all 
error-prone disjointigs into a single string (in an arbitrary order), 

constructs an accurate assembly graph from the resulting concate-
nate, uses reads to untangle this graph, and resolves bridged repeats 
(which are bridged by some reads in the repeat graph). Afterwards, 
it uses the repeat graph to resolve unbridged repeats (which are not 
bridged by any reads) using small differences between repeat copies 
and then outputs accurate contigs formed by paths in this graph.

We benchmark Flye against five state-of-the-art SMS assemblers 
(Falcon, Miniasm, HINGE, Canu, and MaSuRCA) and show that 
it generates more accurate and contiguous assemblies and provides 
valuable information to aid in assembly finishing. Flye also recon-
structs the mosaic structure of segmental duplications (SDs)—a dif-
ficult problem even for finished genomes14,15.

Results
Repeat graph construction. Repeats in a genome are often repre-
sented as pair-wise local alignments and visualized as alignment-
paths in a two-dimensional dot-plot of a genome. This pair-wise 
representation is limited since it does not contribute to solving the 
repeat characterization problem12,16. In contrast, the repeat graph 
compactly represents all repeats in a genome and reveals their 
mosaic structure12,14. Assembly graph construction represents a spe-
cial case of the repeat graph construction problem.

Figure 2 outlines the algorithm for constructing the repeat graph 
of a finished (complete) genome. Flye applies this algorithm to con-
struct the repeat graph of a pseudo-genome formed by concatenat-
ing all disjointigs (formed at the previous stage of the pipeline) in 
an arbitrary order. The Methods section explains why the result-
ing graph provides the correct representation of the assembled 
genome (as if it had been constructed from a complete genome) and 
describes additional algorithmic details.

Resolving unbridged repeats with Flye. Flye utilizes the con-
structed repeat graph for the resolution of unbridged repeats. 
Resolving unbridged and nearly identical repeats using SMS reads 
is a difficult problem since error-prone SMS reads make it difficult 
to distinguish repeat copies with divergence below 10%. As a result, 
SMS assemblers often fail to resolve unbridged repeats, which are 
common even in bacterial genomes7,17. This challenge is related to 

Assembly of long, error-prone reads using repeat 
graphs
Mikhail Kolmogorov" "1, Jeffrey Yuan" "2, Yu Lin" "3 and Pavel A. Pevzner" "1*

Accurate genome assembly is hampered by repetitive regions. Although long single molecule sequencing reads are better able 
to resolve genomic repeats than short-read data, most long-read assembly algorithms do not provide the repeat character-
ization necessary for producing optimal assemblies. Here, we present Flye, a long-read assembly algorithm that generates 
arbitrary paths in an unknown repeat graph, called disjointigs, and constructs an accurate repeat graph from these error-rid-
dled disjointigs. We benchmark Flye against five state-of-the-art assemblers and show that it generates better or comparable 
assemblies, while being an order of magnitude faster. Flye nearly doubled the contiguity of the human genome assembly (as 
measured by the NGA50 assembly quality metric) compared with existing assemblers.

NATURE BIOTECHNOLOGY | VOL 37 | MAY 2019 | 540–546 | www.nature.com/naturebiotechnology540



ARTICLESNATURE BIOTECHNOLOGY

the challenge of constructing phased diploid genome assemblies4 
and overlap-filtering for repeat resolution8,18. The repeat graph con-
structed by Flye offers an approach for resolving unbridged repeats 
based on analyzing the topology of the repeat graph.

Figure 3 shows an unbridged repeat REP as an edge in the assem-
bly graph. It would be impossible to resolve this repeat (that is, to 
pair each incoming edge into the initial vertex of REP with the 
corresponding outgoing edge from the terminal vertex of REP) if 
its two copies were identical. However, since there exist variations 
between these copies, it becomes possible to transform the single 
sequence REP into two different repeat instances, REP1 and REP2, 
as shown in Fig. 3. The Methods section describes how Flye resolves 
unbridged repeats by (1) identifying variations between repeat cop-
ies, (2) matching each read with a specific repeat copy using these 
variations, and (3) using these reads to derive a distinct consensus 
sequence for each repeat copy.

Benchmarking Flye. We benchmarked Flye against SMS assemblers 
Canu, Falcon, HINGE, Miniasm, and MaSuRCA using six datasets. 
We used QUAST19 to evaluate all assemblers (Supplementary Note 
1). Since Miniasm returns assemblies with a much larger number of 
mismatches and indels than other assemblers, it is not well suited 
for a reference-based quality evaluation with QUAST. To make a 
fair comparison, we ran the ABruijn contig-polishing module6 on 
the Miniasm output to improve the accuracy of its contigs (referred 
to as Miniasm + ABruijn).

Benchmarking with the BACTERIA dataset. The dataset consists 
of 21 sets of Pacific Biosciences (PacBio) reads from the National 
Collection of Type Cultures (NCTC). These NCTC sets were studied  

in detail in ref. 7 and used to benchmark various assemblers. We 
only benchmarked Flye against HINGE on these datasets, since 
HINGE outperformed the other assemblers on bacterial genomes7. 
We ignored small connected components in the bacterial assembly 
graphs (which represent plasmids that do not share repeats with 
chromosomes) and classified an assembly as (1) complete if the 
assembly graph consists of a single loop-edge representing a circu-
lar chromosome, (2) semicomplete if the assembly graph contains 
multiple edges but there exists a single Chinese postman tour in this 
graph20, and (3) tangled if the assembly graph is neither complete 
nor semicomplete.

While HINGE does not distinguish between complete and semi-
complete assemblies, we argue that ignoring this separation may 
lead to assembly errors. Indeed, a single Chinese postman tour in 
a semicomplete assembly graph results in a unique assembly only 
in the case of unichromosomal genomes without any plasmids that 
share repeats with the chromosome (repeat-sharing plasmids). In 
the case of multichromosomal genomes or in the case of repeat-
sharing plasmids, there exist multiple possible assemblies from 
a semicomplete assembly graph. Since ∼10% of known bacterial 
genomes are multichromosomal and since a large fraction of uni-
chromosomal genomes have repeat-sharing plasmids21, the assump-
tion that a semicomplete assembly graph results in a complete 
genome reconstruction may lead to errors.

Before resolving unbridged repeats, Flye assembled the genomes 
from the BACTERIA dataset into 4 complete, 1 semicomplete, and 
16 tangled assembly graphs. After resolving unbridged repeats, the 
Flye assemblies resulted in 8 complete, 5 semicomplete, and 8 tan-
gled assembly graphs with the number of edges varying from 3 to 25. 
Supplementary Fig. 1 shows examples of assembly graphs generated  

Genome

Reads

Generating disjointigs

Concatenated disjointigs

Repeat graph of the concatenate

R1 R2 R1 R2

A

B C D

A R1

R1

D

R2

R1

R2 R2

C R1 B R2

A B D

R′1

A
C D

B

R′′1

Resolving bridged repeats

B D

Aligning reads to the repeat graph

R′1

R′2
A

C
DB

R′′1

Resolving unbridged repeats

R′′2

A R2R2 C

Repeat plot of the concatenate
a e

b

c

d

f g h i

C AC

Fig. 1 | Flye outline. a, A ‘genome’ with two 99% identical copies of a repeat R1 and two 99% identical copies of a repeat R2. Segments A, B, C, and D 
represent non-repetitive regions. b, A set of reads sampled from the genome. c, Two (misassembled) disjointigs AR1DR2A and R2CR1BR2C derived from the 
reads. d, Concatenate of the disjointigs. e, Repeat plot of the concatenate. f, Repeat graph constructed by ‘gluing’ vertices in the concatenate according to 
the repeat plot. For each two-dimensional point (x, y) in the repeat plot, we glue vertices x and y in the concatenate. g, Aligning reads against the repeat 
graph. h, Resolving the bridged repeat R1 and reconstructing its two copies R′1 and R′′1. The differences between each copy of this repeat and the consensus 
of this repeat are shown as small diamonds. i, Resolving the unbridged repeat R2 with two slightly diverged copies. Supplementary Note 4 describes the 
Flye assembly of a simulated genome modeled after the genome shown in a.

NATURE BIOTECHNOLOGY | VOL 37 | MAY 2019 | 540–546 | www.nature.com/naturebiotechnology 541



ARTICLES NATURE BIOTECHNOLOGY

by Flye and HINGE, and Supplementary Table 1 illustrates that Flye 
and HINGE generated very similar assemblies.

Benchmarking with the METAGENOME dataset. The 
METAGENOME dataset consists of Pacific Biosciences reads 
from a synthetic community of 20 bacteria. Since 3 of 20 bacte-
rial genomes in the metagenomic sample had coverage below 1× 
(Methanobrevibacter smithii, Candida albicans, and Streptococcus 
pneumoniae), they were excluded from the benchmarking analysis. 
Since other assemblers performed poorly on the METAGENOME 
dataset, we limited our benchmarking to Flye and Canu, which 
assembled this dataset with NGA50 = 1,277 kb (84 misassemblies) 
and NGA50 = 1,061 kb (99 misassemblies), respectively (see Table 1).  
Supplementary Note 2 illustrates that most misassemblies in the 
METAGENOME dataset probably represent differences between 
the genomes in the METAGENOME sample and the reference 
genomes rather than real misassemblies.

Flye performed better than Canu for five genomes and Canu per-
formed better that Flye for four genomes. In particular, Flye produced 
a better assembly of Rhodobacter sphaeroides, which has the lowest 
coverage (24×) among the 17 analyzed genomes (NGA50 = 2 Mb 
for Flye, compared with 54 kb for Canu). Comparison between the 
metagenome assemblies and the inferred isolate assemblies (from 
reads matched to the reference genomes) suggests that our metage-
nomics assemblies could be further improved by a better handling 
of datasets with uneven coverage.

Benchmarking with the YEAST dataset. The YEAST dataset con-
tains PacBio and Oxford Nanopore Technology (ONT) reads from 
the Saccharomyces cerevisiae S288c genome of length 12.1 Mb at 30× 

coverage22. Similarly to the original study, we used the full set of 
ONT reads in the YEAST-ONT dataset (30× coverage) but down-
sampled the PacBio reads from the original 120× coverage to 30× 
in the YEAST-PacBio dataset to have their coverage distribution be 
similar to the ONT data. Assembling this dataset with the original 
120× coverage results in better assemblies; for example, the NGA50 
increased from 560 kb to 732 kb for the Flye assembly (Flye fully 
assembled 14 of 16 yeast chromosomes). Table 1 illustrates that all 
of the assemblers tested except HINGE produced YEAST-PacBio 
assemblies with similar NGA50 values ranging from 560 kb for Flye 
to 603 kb for Canu (HINGE resulted in a lower NGA50 of 361 kb). 
Flye generated the most accurate assembly with 5 errors (versus 13 
errors for Canu). Although Miniasm generated an assembly with 
only ∼90% sequence identity, Miniasm + ABruijn contigs had 
99.93% accuracy. Canu and Flye resulted in assemblies with the 
highest sequence identity (above 99.95%).

The YEAST-ONT assemblies show a similar trend, with all 
assemblers except HINGE producing similar NGA50 values rang-
ing from 637 kb (Falcon) to 723 kb (Miniasm). Flye generated 
the most accurate assembly with 9 errors (18 errors for Canu). 
Supplementary Fig. 2 shows the assembly graph generated by Flye.

Analyzing the WORM dataset. The WORM dataset contains 
PacBio reads from the Caenorhabditis elegans genome of length 
∼100 Mb at 40× coverage. Flye and Canu produced the most con-
tiguous assemblies (NGA50 = 1,893 kb and 1,974 kb, respectively). 
However, Canu showed an increased number of misassemblies 
(190) compared with Flye (111) and Falcon (118). Flye was faster 
than Canu and Falcon in assembling the WORM dataset (128, 780, 
and 945 minutes of wall clock time, respectively (see Supplementary 
Note 1 for more details). With an increase in genome size, Flye 
achieves close to an order of magnitude speed-up as compared 
with Canu: for example, 140 versus 1,100 hours to assemble the 
Drosophila melanogaster genome. This speed-up highlights the 
advantages of skipping the time-consuming read-correction step 
and replacing conventional contig generation with the much more 
rapid generation of disjointigs. Supplementary Fig. 3 shows the 
assembly graph generated by Flye.

Since inferring the length of long tandem repeats is a difficult 
problem in short-read assembly, tandem repeats in many refer-
ence genomes might be misassembled. Supplementary Fig. 4 
demonstrates that Flye improves on other long-read assemblers in 
reconstructing tandem repeats and reveals that some differences 
between the Flye assembly and the reference C. elegans genome 
probably represent differences with the reference rather than mis-
assemblies by Flye.

Analyzing the HUMAN and HUMAN+ datasets. The HUMAN 
dataset contains ONT reads from the GM12878 human cell line 
at 30× coverage complemented by a set of short Illumina reads 
at 50× coverage. The HUMAN+ dataset combines the HUMAN 
dataset with a dataset of ultra-long ONT reads (those with reads 
N50 > 100 kb; that is, 50% of the total sequence data in reads lon-
ger than 100 kb) at 5× coverage23. Since Canu improved on Falcon 
and Miniasm in assembling large genomes7, we only benchmarked 
Flye against Canu for the human genome datasets. The Canu 
HUMAN assembly was generated in ref. 23, and the assembly of the 
HUMAN+ dataset was later updated by the authors using the latest 
Canu 1.7 version. We also analyzed hybrid MaSuRCA assemblies of 
the HUMAN and HUMAN+ datasets24, which are available from 
the MaSuRCA website.

Currently, the ONT assemblies have many base-calling errors 
(the Flye and Canu HUMAN assemblies had 1.2% and 2.8% error 
rate, respectively) because of the biased error pattern in ONT reads. 
Although the Nanopolish tool contributed to a reduction in the 
base-calling errors of the ONT assemblies25, the resulting error rate 

X A A

A

X
B B B

B

B

B

A

Y Z U

Z

U

Y

X A AB B BY Z U

X
A B

A

B

B

Y

Z

U

X
A B

Y

Z

U

a b

c

d

Fig. 2 | Constructing the approximate repeat graph from local self-
alignments. a, Alignment-paths for all local self-alignments within a 
genome XABYABZBU formed by segments X, A, B, Y, Z, and U. Three 
instances of a mosaic repeat (AB, AB, and B) are represented as diagonal 
alignment-paths in the repeat plot. The self-alignment of the entire 
genome is shown by the main (dotted) diagonal. Alignment endpoints 
are clustered together if their projections on the main diagonal coincide 
or are close to each other (clusters of closely located endpoints for the 
distance threshold d!=!0 are painted with the same color). For example, 
the right-most endpoints (shown in blue) of all three alignments form a 
single cluster because two of them have the same vertical projection and 
two of them have the same horizontal projection on the main diagonal. 
This clustering reveals three clusters (yellow, purple, and blue) with eight 
projections to the main diagonal. b, Projections of the clustered endpoints 
on the main diagonal define eight vertices (breakpoints) that will be used 
for constructing the approximate repeat graph. c, Breakpoints that belong 
to the same clusters are glued together. d, Gluing parallel edges in the 
resulting graph produces the approximate repeat graph.

NATURE BIOTECHNOLOGY | VOL 37 | MAY 2019 | 540–546 | www.nature.com/naturebiotechnology542



ARTICLESNATURE BIOTECHNOLOGY

REP′

REP

22 kb

22 kb

4.4 mb 4.4 mb
IN1 IN2

0.5 mb
OUT1

0.5 mb
OUT2

REP1

REP2

IN1

IN2

IN1

IN2

REP

OUT1

OUT2

OUT1

OUT2

OUT1

OUT2

IN1

IN2

REP

383 76

7193

75

29

89

102 83

79

18

13

a b c

d

e

Fig. 3 | Resolving an unbridged repeat. a, An assembly graph of SMS reads from the E. coli strain EC9964 genome visualized with Bandage30. b, The 
untangled assembly graph (after resolving bridged repeats in the graph on the left) contains a single unbridged repeat REP (and its complement REP′) 
of length 22!kb. The incoming edges into the initial vertex (outgoing edges from the terminal vertex) of edge REP are denoted IN1 and IN2 (OUT1 and 
OUT2). Two complementary strands are fused together in a single connected component. It is unclear whether the genome traverses the assembly graph 
as IN1!→!REP!→!OUT1!→!REP′ or as IN1!→!REP!→!OUT2!→!REP′. c, A total of 93, 71, 75, and 76 reads traverse both IN1 and REP, IN2 and REP, REP and OUT1, 
and REP and OUT2, respectively. The span of 383 reads falls entirely within edge REP. d, After assigning 93 reads that traverse both IN1 and REP to the 
first repeat copy, and 71 reads that traverse both IN2 and REP to the second repeat copy, we ‘move forward’ into the repeat and construct two differing 
consensus sequences for a 8.6-kb-long prefix of REP with divergence 9.8% (two consensus sequences for a 6.8-kb-long suffix of REP when we ‘move 
backward’ into the repeat). The length of the repeat edge is reduced to 22.0!−!8.6!−!6.8!=!6.6!kb, resulting in the emergence of 13!+!18!=!31 spanning reads 
for this repeat, all of them supporting a cis transition (IN1 with OUT1 and IN2 with OUT2). e, Resolved instances of the repeat with consensus sequences 
REP1 and REP2 and divergence 6.9%.

Table 1 | Assembly statistics for the YEAST, WORM, HUMAN, and HUMAN+ datasets generated using QUAST.

Dataset Assembler Length 
(Mb)

No. contigs NG50 
(kb)

Reference 
coverage (%)

Reference 
percentage 
identity (%)

No. misassemblies NGA50 
(kb)

YEAST-PacBio Flye 12.1 28 670 98.3 99.95 5 560
Canu 12.4 33 708 99.5 99.95 13 603
Falcon 12.1 42 562 97.5 99.81 27 562
HINGE 12.2 45 440 91.9 98.81 19 361
Miniasm!+!ABruijn 12.2 36 600 98.2 99.93 11 592

YEAST-ONT Flye 12.1 28 810 98.7 99.04 9 660
Canu 12.2 41 800 99.1 98.96 18 655
Falcon 11.9 41 662 97.4 98.81 17 637
HINGE 12.2 64 309 92.5 97.94 59 292
Miniasm!+!ABruijn 11.6 24 723 98.8 99.03 12 723

WORM Flye 103 85 3,256 99.5 99.93 111 1,893
Canu 108 175 2,954 99.7 99.93 190 1,974
Falcon 101 106 2,291 98.7 99.78 118 1,242
HINGE 103 64 2,710 98.0 99.40 174 1,441
Miniasm!+!ABruijn 108 178 2,314 99.6 99.93 181 1,437

HUMAN Flye!+!Pilon 2,776 1,069 7,886 96.4 99.70 879 6,349
Canu!+!Pilon 2,730 2,195 3,209 95.4 99.49 1,200 2,870
MaSuRCA 2,768 1,269 4,670 95.1 99.84 1,500 3,812

HUMAN+ Flye!+!Pilon 2,823 782 18,181 97.0 99.69 1,487 11,800
Canu!+!Pilon 2,815 798 10,410 96.8 99.81 1,455 7,007

MaSuRCA 2,876 1,111 8,425 97.5 99.80 2,101 5,581

The NG50 of an assembly is the largest possible number L, such that all contigs of length L or longer cover at least 50% of the genome. Given an assembled set of contigs and a reference genome, a 
corrected assembly is formed by breaking each erroneously assembled contig at its breakpoints, resulting in shorter contigs19. The NGA50 of an assembly is defined as the NG50 of its corrected assembly. 
The minimum contig size was set to 5!kb for the YEAST and WORM assemblies and to 50!kb for the HUMAN assemblies. The human reference was modified by masking the low-complexity centromere 
regions of the chromosomes.

NATURE BIOTECHNOLOGY | VOL 37 | MAY 2019 | 540–546 | www.nature.com/naturebiotechnology 543



ARTICLES NATURE BIOTECHNOLOGY

is still an order of magnitude higher than the error rates of Illumina 
or PacBio assemblies. Since most errors in the ONT assemblies are 
frameshift-introducing indels, they are particularly problematic for 
downstream applications.

To mitigate the high error rates of these ONT assemblies, 
we used Pilon26 in the indel correction mode to polish Flye and 
Canu assemblies using Illumina reads. Although such polishing 
reduced the error rates (to 0.30% for Flye + Pilon and to 0.51% for 
Canu + Pilon), we note that Illumina-based read correction of ONT 
assemblies has limitations, especially for repetitive regions with low 
short-read mappability.

It turns out that Flye assembled a larger fraction of the human 
genome (96.4%) than Canu (95.4%) and MaSuRCA (95.1%). 
Interestingly, Flye and MaSuRCA, in contrast to Canu, assembled 
some difficult-to-assemble, low-complexity centromeric chromo-
some regions, which are hard to benchmark using reference-based 
methods. To provide a fair comparison between all three assem-
blers using QUAST, we thus modified the hg38 reference by mask-
ing the centromeric regions using the coordinates from the UCSC 
Genome Browser.

For the HUMAN dataset, Flye, MaSuRCA, and Canu generated 
assemblies with NGA50 values equal to 6.35 Mb (879 assembly 
errors), 3.81 Mb (1,500 assembly errors), and 2.87 Mb (1,200 assem-
bly errors), respectively. The MaSuRCA assembly had a slightly 

higher percentage identity with the reference (99.84% compared 
with 99.70% for Flye + Pilon and 99.49% for Canu + Pilon).

For the HUMAN+ dataset, Flye, Canu, and MaSuRCA generated 
assemblies with NGA50 values equal to 11.8 Mb (1,487 assembly 
errors), 7 Mb (1,455 assembly errors), and 5.6 Mb (2,101 assembly 
errors), respectively. As expected, incorporating ultra-long ONT 
reads resulted in a more contiguous assembly for all assemblers.

SDs in the human genome. The repeat graph constructed by Flye 
reveals the complex mosaic structure of SDs. Flye classifies all 
edges in the graph into unique and repeat edges by analyzing how 
reads traverse the graph and by using coverage-based arguments 
(see Methods). After removing all unique edges from the assem-
bly graph, only the connected components formed by repeat edges 
remain, which reveal the SDs encoded by the repeat edges in the 
graph. We define the complexity (length) of an SD as the number 
(total length) of edges in its connected component. Figure 4 (left) 
illustrates a mosaic SD of complexity 7 and length 25.7 kb (the 7 col-
ored repeat edges form a connected component in the Flye assembly 
graph after removing all of the unique edges). An SD is classified 
as simple if its complexity is 1 and mosaic otherwise14,15. Figure. 4 
(right) shows the distributions of lengths and complexities of SDs 
identified by Flye and illustrates the power of the assembly graph 
for repeat resolution.

B (8 kb, 112×)

D (3.5 kb, 114×)

E (1.4 kb, 75×)

F (5 kb, 118×)G (1.7 kb, 75×)

C (1.3 kb, 473×)

A (5 kb, 50×)

chr7:57 mb

chr20:47 mb

chr7:57 mb

chr20:48 mb

chr20:47 mb

chr20:48 mb

A F
chr7:57 mb

F G
chr20:47 mb

B GF G B
chr20:48 mb

EDC*B

A EDC*B

DC*FEDC*

120

100

80

60

40

20

102

101

100

0

0
0 10 20 30 40 50

Complexity

Before repeat resolution
After repeat resolution with standard ONT reads
After repeat resolution with ultra-long ONT reads

Before repeat resolution
After repeat resolution with standard ONT reads
After repeat resolution with ultra-long ONT reads

5 10 15 20 25 30 35 40 45 50

N
um

be
r 

of
 S

D
s

N
um

be
r 

of
 S

D
s

Length (kb)

a b

Fig. 4 | An SD from the Flye assembly of the HUMAN dataset and the distribution of the lengths and complexities of all SDs from the same assembly. 
a, A mosaic SD of complexity 7 represented as a connected component formed by repeat edges (7 colored edges of total length 25.7!kb) in the assembly 
graph of the HUMAN dataset (flanking unique edges shown in black). The loop-edge C with coverage 473× represents a tandem repeat C* with unit 
length 1.3!kb that is repeated ∼19 times. The colored edges of the assembly graph align to a region on chromosome 7 of length 31!kb and two regions on 
chromosome 20 of lengths 30!kb and 46!kb. These three instances of SDs were not resolved using standard ONT reads but were resolved using ultra-
long reads in a way that is consistent with the reference human genome. b, Statistics are given before resolving bridged repeats (green), after resolving 
bridged repeats with standard ONT reads (orange), and with ultra-long ONT reads (blue). Only SDs between 5!kb and 50!kb in length and with complexity 
between 2 and 50 contributed to the SD length and SD complexity histograms. Only two SDs have complexity exceeding 50 before bridged repeat 
resolution. Of the 688 SDs between 5!kb and 50!kb, 545 were resolved using the standard ONT reads, and ultra-long reads resolved an additional 58 SDs. 
There were 1,256 simple SDs before bridged repeat resolution and 143 after bridged repeat resolution with ultra-long reads. Since Flye usually resolves SDs 
shorter than the typical read length, the SDs identified by Flye do not include many known human SDs.

NATURE BIOTECHNOLOGY | VOL 37 | MAY 2019 | 540–546 | www.nature.com/naturebiotechnology544



ARTICLESNATURE BIOTECHNOLOGY

There are 1,748 repeat edges longer than 5 kb, forming 749 con-
nected components in the Flye assembly graph of the HUMAN 
dataset before performing bridged repeat resolution. After bridged 
repeat resolution with ultra-long reads, there are only 765 repeat 
edges, forming 107 connected components in the assembly graph. 
Of these, 73 (34) represent mosaic (simple) SDs (most simple SDs 
represent isolated edges and loop-edges). See Supplementary Note 3  
for more details.

A theoretical framework for the repeat graph construction. 
In addition to the described Flye algorithm, we provide a math-
ematical formulation of the repeat characterization problem and 
describe an alternative algorithm for repeat graph construction 
(Fig. 5). The Methods section provides additional details and 
explains the relation between the theoretical framework and the 
implementation in Flye.

Discussion
We describe the Flye algorithm for constructing an assembly graph 
from SMS reads and demonstrate that repeat characterization 
improves genome assembly. We show how to use the assembly graph 
to resolve unbridged repeats using variations between repeat copies 
and compared Flye with the Canu, Falcon, HINGE, Miniasm, and 
MaSuRCA assemblers.

In the case of the BACTERIA datasets, Flye and HINGE showed 
good agreement in the structure of constructed assembly graphs. 

Flye showed substantial improvement compared with HINGE on 
more complex eukaryotic datasets and generated the most accurate 
assemblies of the YEAST and WORM datasets; Flye and Canu also 
produced the best assembly contiguity in the case of the WORM 
dataset. For the more complex HUMAN and HUMAN+ datasets, 
Flye generated more contiguous and accurate assemblies than Canu 
and MaSuRCA, while being notably faster. Although assemblies of 
ONT reads feature rather high base-calling error rates (1.2% for the 
Flye HUMAN assembly), polishing the Flye assembly graph using 
Illumina reads has the potential to reduce the error rates by an order 
of magnitude.

The fact that Flye substantially improved on the Canu and 
MaSuRCA assemblies of the human genome suggests that there 
are still unexplored avenues for increasing the contiguity of 
SMS assemblies. We believe that better algorithms for resolving 
unbridged repeats in assembly graphs have the potential to greatly 
improve SMS assemblies, potentially increasing their NGA50 val-
ues by an order of magnitude. Flye constructed a repeat graph of 
the human genome with only 765 repeat edges representing various 
long SDs. Our algorithm for resolving unbridged repeats resolved 
only a small fraction of these SDs since it is currently limited to 
simple SDs (the vast majority of human SDs are mosaic). Moreover, 
it currently has difficulties resolving highly similar SDs, for exam-
ple, SDs with less than 1% divergence. Although we reported the 
resolution of highly similar SDs on simulated datasets (as did a pre-
vious study18), most unbridged repeats resolved by Flye and Canu 

A1 B E8

A B 

A1 B2 C3 D4

A1 B2 C3 D4

B5 C6 D7 E8 B5 C6 D7 E8
A9 B10 C11 D12 E13

A1 B2 C3 D4 B5 C6 D7 E8 A9 B10 C11 D12 E13

A1

B2

C3

D4

B5

C6

D7

E8

A9

B10

C11

D12

E13

A9 B10 C11 D12 E13

A9 B10 C11 D12 E13

A B C D E

C D

C D E

A B D E

A/B D/E

Tour T

Graph G

Repeat plot PlotT (G )

Repeat graph construction

Punctilious repeat graph

Repeat graph

a b

Fig. 5 | Constructing the repeat plot of a tour in the graph and constructing the repeat graph from a repeat plot. a, A tour T!=!…A1B2C3D4…B5C6D7E8…
A9B10C11D12E13… in a graph G with red, green, and blue instances of a repeat that includes two copies of vertices A and E and three copies of vertices B, C, 
and D. Dots represent multiple vertices that appear before, between, and after these three instances of the repeat. The repeat plot PlotT(G) consists of 
three diagonals representing the three instances of the repeat in the tour. The trivial self-alignment of the entire genome against itself is shown by the main 
dotted diagonal (the points below this diagonal are not shown). Since vertex A in the graph is visited twice in tour T, it results in a single point (1, 9)  
in PlotT(G). Vertex B results in points (2, 5), (2, 10), and (5, 10); vertex C results in points (3, 6), (3, 11), and (6, 11); vertex D results in points (4, 7), (4, 12),  
and (7, 12); and vertex E results in the point (8, 13). b, Constructing the punctilious repeat graph from the repeat plot by gluing vertices with indices i and j  
for each point (i, j) in the repeat plot. Each non-branching path in the graph is substituted by a single edge with length equal to the number of edges in this 
path. The lengths of the short edges (A, B) and (D, E) in the resulting graph are equal to 1 and the length of the long edge (B, D) is equal to 2 (for edge  
length threshold d!=!1). The punctilious repeat graph (second graph from the bottom) is transformed into the repeat graph (bottom-most graph) by 
contracting the short edges (A, B) and (D, E).

NATURE BIOTECHNOLOGY | VOL 37 | MAY 2019 | 540–546 | www.nature.com/naturebiotechnology 545



ARTICLES NATURE BIOTECHNOLOGY

are simple repeats with divergence exceeding 3%. Extending Flye to 
mosaic SDs and highly similar SDs has the potential to resolve most 
of the remaining unbridged repeats, since the vast majority of SDs 
in the human genome diverge by more than 1% (ref. 15). Since there 
are only 53 long SDs (with length exceeding 15 kb) in the human 
genome that diverge by less than 1%, an SMS assembler that accu-
rately resolves highly similar unbridged repeats will result in highly 
contiguous human genome assemblies, thus reducing the need for 
additional genome-finishing experiments (such as using Hi-C and/
or optical maps).

Assembly graphs represent a special case of breakpoint graphs27, 
and they are therefore well suited for analyzing structural varia-
tions28,29 and SDs14,15. Flye assembly graphs provide a useful 
framework for reconstructing SDs and planning additional genome-
finishing experiments.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability, and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41587-019-0072-8.

Received: 14 May 2018; Accepted: 6 February 2019;  
Published online: 1 April 2019

References
 1. Koren, S. et al. Hybrid error correction and de novo assembly of single-

molecule sequencing reads. Nat. Biotechnol. 30, 693–700 (2012).
 2. Chin, C. S. et al. Nonhybrid, !nished microbial genome assemblies from 

long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).
 3. Berlin, K. et al. Assembling large genomes with single-molecule sequencing 

and locality-sensitive hashing. Nat. Biotechnol. 33, 623–630 (2015).
 4. Chin, C. S. et al. Phased diploid genome assembly with single-molecule 

real-time sequencing. Nat. Methods 13, 1050–1054 (2016).
 5. Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy 

long sequences. Bioinformatics 32, 2103–2110 (2016).
 6. Lin, Y. et al. Assembly of long error-prone reads using de Bruijn graphs.  

Proc. Natl Acad. Sci. USA 113, E8396–E8405 (2016).
 7. Kamath, G. M., Shomorony, I., Xia, F., Courtade, T. A. & David, N. T. 

HINGE: long-read assembly achieves optimal repeat resolution. Genome Res. 
27, 747–756 (2017).

 8. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive 
k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

 9. Nowoshilow, S. et al. "e axolotl genome and the evolution of key tissue 
formation regulators. Nature 554, 50–55 (2018).

 10. Ghurye, J., Pop, M., Koren, S., Bickhart, D. & Chin, C. S. Sca#olding of long 
read assemblies using long range contact information. BMC Genomics 18,  
527 (2017).

 11. Weissensteiner, M. H. et al. Combination of short-read, long-read, and optical 
mapping assemblies reveals large-scale tandem repeat arrays with population 
genetic implications. Genome Res. 27, 697–708 (2017).

 12. Pevzner, P. A., Tang, H. & Tesler, G. De novo repeat classi!cation and 
fragment assembly. Genome Res. 14, 1786–1796 (2004).

 13. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its 
applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

 14. Jiang, Z. et al. Ancestral reconstruction of segmental duplications reveals 
punctuated cores of human genome evolution. Nat. Genet. 39,  
1361–1368 (2007).

 15. Pu., L., Lin, Y. & Pevzner, P. A. Detection and analysis of ancient segmental 
duplications in mammalian genomes. Genome Res. 28, 901–909 (2018).

 16. Bao, Z. & Eddy, S. Automated de novo identi!cation of repeat sequence 
families in sequenced genomes. Genome Res. 8, 1269–1276 (2002).

 17. Schmid, M. D. et al. Pushing the limits of de novo genome assembly for 
complex prokaryotic genomes harboring very long, near identical repeats. 
Nucleic Acids Res. 46, 8953–8965 (2018).

 18. Tischler, G. Haplotype and repeat separation in long reads. Preprint at 
bioRxiv https://doi.org/10.1101/145474 (2017).

 19. Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. 
Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34, 
i142–i150 (2018).

 20. Edmonds, J. & Johnson, E. L. Matching, Euler tours and the Chinese 
postman. Math. Program. 5, 88–124 (1973).

 21. Antipov, D., Korobeynikov, A., McLean, J. S. & Pevzner, P. A. hybridSPAdes: 
an algorithm for hybrid assembly of short and long reads. Bioinformatics 32, 
1009–1015 (2015).

 22. Giordano, F. et al. De novo yeast genome assemblies from MinION, PacBio 
and MiSeq platforms. Sci. Rep. 7, 3935 (2017).

 23. Jain, M. et al. Nanopore sequencing and assembly of a human genome with 
ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

 24. Zimin, A. V. et al. Hybrid assembly of the large and highly repetitive genome 
of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA 
mega-reads algorithm. Genome Res. 27, 787–792 (2017).

 25. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore 
sequencing. Nat. Methods 14, 407 (2017).

 26. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant 
detection and genome assembly improvement. PloS ONE 9, e112963 (2014).

 27. Lin, Y., Nurk, S. & Pevzner, P. A. What is the di#erence between the 
breakpoint graph and the de Bruijn graph? BMC Genomics 15, S6 (2014).

 28. Chaisson, M. J. P. et al. Resolving the complexity of the human genome using 
single-molecule sequencing. Nature 51, 608–611 (2015).

 29. Nattestad, M. S. et al. Complex rearrangements and oncogene ampli!cations 
revealed by long-read DNA 2 and RNA sequencing of a breast cancer cell 
line. Genome Res. 28, 1126–1135 (2018).

 30. Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive 
visualization of de novo genome assemblies. Bioinformatics 31,  
3350–3352 (2015).

Acknowledgements
We are indebted to S. Nurk for his multiple rounds of critique and suggestions that have 
improved the paper. We are also grateful to A. Mikheenko, B. Behsaz, L. Pu, and G. Tesler 
for their comments. This work is supported by NSF/MCB-BSF grant no. 1715911.

Author contributions
All authors contributed to developing the Flye algorithms and writing the paper. M.K., 
Y.L., and J.Y. implemented the Flye algorithm. M.K. benchmarked Flye and other 
assembly tools. P.A.P. directed the work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41587-019-0072-8.
Reprints and permissions information is available at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to P.A.P.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

NATURE BIOTECHNOLOGY | VOL 37 | MAY 2019 | 540–546 | www.nature.com/naturebiotechnology546



ARTICLESNATURE BIOTECHNOLOGY

Methods
Repeat characterization problem. Below we describe the abstract repeat 
characterization problem and explain how it relates to genome assembly. Consider 
a tour T = v1, v2, … vn of length n visiting all vertices of a directed graph G. We say 
that the ith and jth vertices in the tour T are equivalent if they correspond to the 
same vertex of the graph, that is, vi = vj. "e set of all pairs of equivalent vertices 
forms a set of points (i, j) in a two-dimensional grid that we refer to as the repeat 
plot PlotT(G) of the tour T (Fig. 5). "e transformation of a tour T traversing 
a known graph G into the repeat plot PlotT(G) is a simple procedure. Below, 
we address the reverse problem that is at the heart of genome assembly, repeat 
characterization and synteny block construction: given an arbitrary set of points 
Plot, in a two-dimensional grid, !nd a graph G = G(Plot) and a tour T in this graph 
such that Plot = PlotT(G).

A dot-plot of a genome is a matrix that graphically represents all repeats 
in a genome31. In the case of repeat characterization, we are interested in the 
dot-plot Plot formed by non-overlapping alignment-paths representing all high-
scoring local self-alignments of a genome against itself (below, we refer to these 
alignments as simply self-alignments). Each self-alignment reveals two instances 
of a repeat corresponding to contiguous segments x and y in the genome (x 
and y are called the spans of the alignment). Given a genome of length n and a 
set of its self-alignments Plot, the repeat characterization problem amounts to 
constructing a graph G and a tour T of length n in this graph (each segment of 
the genome corresponds to a subpath of the graph traversed by the tour) such 
that Plot = PlotT(G) and the tour T is alignment-compatible. A tour is alignment-
compatible with respect to the dot-plot Plot if, for each alignment with spans x and 
y in Plot, paths in the graph corresponding to segments x and y coincide.

Generating the repeat plot of a genome. Our goal is to construct both the repeat 
graph of a genome and an alignment-compatible tour in this graph. Constructing 
the de Bruijn graph of a genome based on long k-mers will not solve this problem 
since the differences between imperfect repeat copies mask the repeat structure 
of the genome. Constructing the de Bruijn graph based on short k-mers will not 
solve this problem due to the presence of repeating short k-mers within long 
repeats (these k-mers lead to a tangled repeat graph). Thus, at the initial stage, 
Flye generates all self-alignments (repeats) of a genome and combines them into 
a repeat plot Plot. However, it is unclear how to solve the reverse problem of 
generating the repeat graph G(Plot) of the genome.

To address this problem for a ‘genome’ representing a concatenate of accurate 
short reads, a previous study12 described various graph simplification procedures, 
for example, bubble and whirl removals, that are now at the heart of various short-
read assemblers such as SPAdes13. However, it is not clear how to generalize these 
procedures to make them applicable to error-prone SMS reads. Below, we show 
how to modify the concept of a punctilious repeat graph12 so that it can be applied 
to assembling SMS reads.

Constructing a punctilious repeat graph. Let Alignments = Alignments(Genome, 
minOverlap) be the set of all sufficiently long (of length at least ‘minOverlap’) 
self-alignments of a genome ‘Genome’. Flye sets the ‘minOverlap’ parameter as the 
N90 of the read-set (the N90 of reads is the largest possible number N such that all 
reads of length N or longer have a total length of at least 90% of the total sequence; 
‘minOverlap’ varies from 3,000 to 5,000 nucleotides for the SMS datasets analyzed 
in this paper).

Given a set of self-alignments ‘Alignments’ of a genome ‘Genome’, we construct 
the punctilious repeat graph RepeatGraph(Genome, Alignments) by representing 
‘Genome’ as a path consisting of |Genome| vertices (Fig. 5) and by ‘gluing’ each 
pair of vertices (positions in the genome) that are aligned against each other in one 
of the alignments in ‘Alignments’12. Gluing vertices v and w amounts to substituting 
them by a single vertex that is connected by edges to all vertices that either vertex 
v or vertex w was connected to. We consider branching vertices (that is, vertices 
with either in-degree or out-degree differing from 1) in the resulting graph and 
substitute each non-branching path between them by a single edge of length equal 
to the number of original edges in this path. Edges in the punctilious repeat graph 
are classified as long (longer than a predefined threshold d with default value 500 
nucleotides) and short (Fig. 5).

The punctilious repeat graphs of real genomes are very complex due to 
various artifacts12,14. For example, the starting/ending points of alignment-paths 
corresponding to three repeat copies starting at positions x, y, and z in the genome 
hardly ever start at points (x, y), (x, z), and (y, z) in the repeat plot. Because each 
repeat with m copies in the genome results in ( )m

2  pair-wise alignments and each 
of the corresponding ( )m

2  alignment-paths may have unique starting (ending) 
vertices that differ from all other starting/ending positions, there will be many 
gluing operations for the starting (ending) positions of this repeat. Note that each 
of these operations may form a new branching vertex in the punctilious repeat 
graph. For example, gluing the endpoints of the three diagonals in Fig. 5 results in 
the branching vertices A, B, D, and E in the graph. Punctilious repeat graphs of real 
genomes often contain many branching vertices, making it difficult to compactly 
represent repeats. We address this challenge by transforming the punctilious repeat 
graph into a simpler graph.

From punctilious repeat graph to repeat graph. As described before, the 
endpoints of alignment-paths representing the same repeat might not be 
coordinated among all pair-wise alignments of this repeat. These uncoordinated 
alignments result in a complex repeat graph with an excessive number of branching 
vertices and many short edges (shorter than a threshold d). The repeat graph 
RepeatGraph(Genome, Alignments, d) is defined as the result of contracting all 
short edges in the punctilious repeat graph (Fig. 5). The contraction of an edge is 
the gluing of the endpoints of this edge, followed by the removal of the loop-edge 
resulting from this gluing. Since the genome represents a tour visiting all edges in 
the repeat graph, we define the multiplicity of an edge in the repeat graph as the 
number of times this edge is traversed in the tour. Edges of multiplicity 1 are called 
unique edges and all other edges are called repeats.

Approximate repeat graphs. The described approach, although simple in theory, 
results in various complications in the case of real genomes, particularly in the 
case of inconsistent pair-wise alignments (see Supplementary Note 5). In the case 
of short reads, various graph simplification procedures12,13 result in a modified 
repeat graph that represents a more sensible repeat characterization, but sacrifice 
the fine details of some repeats in favor of revealing the mosaic structure shared 
by different repeat copies. However, in the case of SMS assemblies, repeat graph 
(and A-Bruijn graph) construction results in excessively complex graphs that 
make the previously proposed graph simplification algorithm for A-Bruijn graph 
construction12 inefficient and make it difficult to select sensible parameters 
for graph simplification. For example, it is unclear how to select an adequate 
‘bubble_size’ parameter for bubble removal (small values of this parameter result 
in complex A-Bruijn graphs while large values result in oversimplified A-Bruijn 
graphs). While there exists a ‘sweet spot’ for this parameter in short-read assembly, 
we were not able to find such a spot for long-read assembly. That is why we 
departed from the original A-Bruijn graph framework and opted to construct 
a different version of the repeat graph (called the approximate repeat graph) 
based only on the endpoints of diagonals in the genomic dot-plot rather than the 
entire diagonals as in a previous study12. This approach led to a great reduction in 
running time and allowed us to bypass the bubble/whirl-removal steps (and the 
challenge of choosing parameters for these operations) altogether.

Some branching vertices in the repeat graph arise from the contraction 
of multiple vertices in the punctilious repeat graph; for example, vertices A 
and B were contracted into a single vertex A/B in the repeat graph in Fig. 5. 
Consider the set of all vertices in the punctilious repeat graph that gave rise to 
branching vertices in the repeat graph (vertices A, B, D, and E in Fig. 5) and let 
Breakpoints = Breakpoints(Genome, Alignments, d) be the set of all positions in 
the genome that gave rise to these vertices (Breakpoints = {1, 2, 4, 5, 7, 8, 9, 10, 
12, 13} in Fig. 5). This set of vertices forms a set of short, contiguous genomic 
segments (segments (1, 2), (4, 5), (7–10), and (12, 13) in Fig. 5) that contain 
all horizontal and vertical projections of the endpoints of all alignments in 
‘Alignments’.

Flye approximates the set ‘Breakpoints’ by recruiting all horizontal and vertical 
projections of the endpoints of alignments from ‘Alignments’ to the main diagonal 
in the repeat plot. Figure 2 presents three alignments, resulting in eight projected 
points on the main diagonal. Two alignment endpoints are close if either of 
their projections on the main diagonal are located within a distance threshold d 
(including the case when a vertical projection of one endpoint coincides with or is 
close to a horizontal projection of another endpoint).

Flye clusters close endpoints together based on single linkage clustering. 
Applying this procedure (with d = 0) to eight breakpoints (projected endpoints) in 
Fig. 2 results in three clusters (breakpoints in the same cluster are painted with the 
same color). Figure 2 illustrates that gluing breakpoints that belong to the same 
clusters (and further collapsing parallel edges) results in an approximate repeat 
graph of the genome. However, although this procedure led to the correct repeat 
graph in the simple case shown in Fig. 2, the approximate repeat graph constructed 
based on the clustering of closely located breakpoints may differ from the repeat 
graph constructed based on the punctilious repeat graph. Supplementary Note 6 
illustrates that mosaic repeats and inconsistencies of local alignments may result in 
an ‘incorrect’ clustering-based repeat graph. Below, we explain how Flye extends 
the set ‘Breakpoints to address this complication.

Extending the set of breakpoints. As described above, Flye constructs the 
initial set ‘Breakpoints’ by projecting all endpoints of the alignments (in the set 
of self-alignments ‘Alignments’) onto the main diagonal in the repeat plot. Each 
point in an alignment-path in the |Genome| × |Genome| grid has two projections 
(horizontal and vertical) on the main diagonal. Note that projections of some 
internal points in an alignment-path may belong to ‘Breakpoints’; for example, 
both projections of the middle point of the longest alignment-path in Fig. 2 (shown 
in purple) belong to ‘Breakpoints’. Such internal points should be reclassified as 
new alignment endpoints (by breaking the alignment-path into two parts) to avoid 
inconsistencies during the construction of the repeat graph. However, for some 
internal points, only one of their two projections belongs to ‘Breakpoints’, leading 
to complications in the path-breaking process. Below, we explain how to break the 
alignment-paths into subpaths (and, at the same time, extend the set ‘Breakpoints’) 
to address this complication.

NATURE BIOTECHNOLOGY | www.nature.com/naturebiotechnology



ARTICLES NATURE BIOTECHNOLOGY

A point in an alignment-path is called valid if both of its projections belong 
to ‘Breakpoints’, and invalid if only one of its projections belongs to ‘Breakpoints’. 
A set ‘Breakpoints’ is called valid if all points in all alignment-paths are valid, and 
invalid otherwise. In the case that the constructed set ‘Breakpoints’ is invalid, 
our goal is to add the minimum number of points to this set to make it valid. See 
Supplementary Note 6 for an example of an invalid point and a discussion on the 
importance of extending the set ‘Breakpoints’ to make it valid.

Flye iteratively adds the missing projection for each invalid point to the 
set ‘Breakpoints’ on the main diagonal until there are no invalid points left. 
Afterwards, it combines close points in ‘Breakpoints’ into segments using 
single linkage clustering (as described above). The set of resulting segments 
(defined by their minimal and maximal positions on the main diagonal) forms 
a set ‘BreakpointSegments’. Two segments from ‘BreakpointSegments’ are 
equivalent if there exists a point in one of the alignment-paths such that one of 
its projections on the main diagonal falls into the first segment and another falls 
into the second segment.

Each repeat of multiplicity m typically corresponds to m segments in 
‘BreakpointSegments’ corresponding to m starting positions of this repeat in 
the genome (and the same number of segments corresponding to its ending 
positions). Note that the number of breakpoint segments resulting from this repeat 
is reduced as compared with the number of breakpoints, which can be as large as 

( )m
2  for the starting positions of the repeat (and the same number for its ending 

positions). Flye takes advantage of this reduction by selecting middle points of 
each breakpoint segment and only gluing these middle points rather than all 
breakpoints. Essentially, it redefines the endpoints of each alignment-path as the 
middle points of corresponding breakpoint segments.

Specifically, Flye constructs the approximate repeat graph by generating 
the set ‘BreakpointSegments’, selecting a middle point from each segment in 
‘BreakpointSegments’, and gluing the two middle points for every pair of equivalent 
segments. Afterwards, it glues together parallel edges (edges that start and end 
at the same vertices) if the genome segments corresponding to these edges are 
aligned in ‘Alignments’, that is, if there exists an alignment with its x- and y-spans 
overlapping both these segments. For brevity, below we refer to the approximate 
repeat graph resulting from this procedure simply as the repeat graph.

From the repeat graph of a genome to the assembly graph of contigs. The 
ABruijn assembler6 constructs a set of contigs but stops short of constructing the 
repeat graph of a genome based on these contigs (Supplementary Note 7 describes 
the challenge of assembling contigs into a repeat graph). The contig construction in 
ABruijn essentially amounts to finding extension reads for extending paths in the 
(unknown) repeat graph of the genome. Each extension read increases the length 
of the growing path until the extension process becomes ambiguous, that is, when 
it reaches a branching vertex in the (unknown) repeat graph. Afterwards, ABruijn 
decides whether to continue or to stop the path extension to avoid assembly errors. 
Since ABruijn does not know the exact locations of branching vertices, it uses 
the last extension read to extend the path beyond the branching vertex by at least 
‘minOverlap’ nucleotides. As a result, each linear contig constructed by ABruijn 
satisfies the overhang property: it extends by at least minOverlap nucleotides before 
the first branching vertex and after the last branching vertex it traverses. Note that 
the same ‘minOverlap’ value is used during repeat graph construction.

Constructing disjointigs. ABruijn and other existing SMS assemblers invest 
substantial time into making sure that generated contigs are correctly assembled 
(represent subpaths of the genomic tour in the repeat graph). In contrast to 
ABruijn, Flye does not attempt to construct accurate contigs at the initial assembly 
stage but instead generates disjointigs as arbitrary paths in the (unknown) repeat 
graph of the genome. However, it constructs an accurate repeat graph (assembly 
graph) from error-prone disjointigs.

Flye randomly walks in the (unknown) assembly graph to generate random 
paths from this graph. Each non-chimeric read from ‘Reads’ defines a subpath of 
a genomic tour in an assembly graph. Flye extends this path by switching from 
the current read to any other overlapping read (with sufficiently long common 
jump-subpath) rather than a carefully chosen overlapping read6, avoiding a time-
consuming test to check whether this selection triggers an assembly error.

Since the resulting FlyeWalk algorithm (see Supplementary Note 8) does not 
invoke the contig correctness check, it constructs paths (chains of overlapping 
reads) that do not necessarily follow the genome tour through the assembly graph. 
Although it may appear counter-intuitive that inaccurate disjointigs constructed 
by FlyeWalk result in an accurate assembly graph, note that inaccurate paths 
(disjointigs) in the de Bruijn graph (a special case of the assembly graph) certainly 
result in an accurate assembly graph. Indeed, an assembly graph constructed 
from arbitrary paths in a de Bruijn graph is the same as the original de Bruijn 
graph (as long as these paths include all k-mers from the assembly graph). See 
Supplementary Note 9 for additional details.

Constructing the assembly graph from disjointigs. Similarly to ABruijn, Flye 
generates disjointigs satisfying the overhang property, which, as will be explained 
below, represents an important condition for constructing the repeat graph. Flye 
further concatenates all disjointigs (separated by delimiters) in an arbitrary order 

into a single string Concatenate. It further uses the longest jump-subpath approach6 
to generate the set ‘Alignments’ of all sufficiently long self-alignments within the 
resulting concatenate and constructs the assembly graph as the repeat graph of the 
concatenate RepeatGraph(Concatenate, Alignments, d).

It has been shown that the repeat graph of concatenated accurate reads (when 
alignments between reads do not extend beyond delimiters in the concatenate of 
all reads) approximates the repeat graph of the genome12. Supplementary Note 10 
demonstrates that the assembly graph constructed from inaccurate disjointigs also 
approximates the repeat graph of the genome.

Figure 3 (left) presents the assembly graph of the SMS reads from an 
Escherichia coli genome. Flye further untangles this graph into a graph with just six 
edges (Fig. 3, middle) as described below.

Resolving bridged repeats in the assembly graph. Flye aligns all reads to the 
constructed assembly graph (see Supplementary Note 11) and uses them to identify 
the repeat edges in this graph (see Supplementary Note 12). It further transforms 
the assembly graph into the condensed assembly graph by contracting all of its 
repeat edges. Aligning a read to the assembly graph induces its alignment to the 
condensed assembly graph, and we focus on bridging reads that align to multiple 
edges in the condensed assembly graph. Untangling incident edges e = (w, v) and 
f = (v, u) in the condensed assembly graph amounts to substituting them by a 
single edge (w, u). Below, we describe how Flye uses bridging reads to untangle 
the condensed assembly graph and how this untangling contributes to resolving 
repeats in the assembly graph.

A bridging read in the condensed assembly graph is called an (e, f)-read if it 
traverses two consecutive edges e and f in this graph. For each pair of incident 
edges e and f in the condensed assembly graph, we define ‘transition(e, f)’ as  
the number of (e, f)-reads plus the number of (f′, e′)-reads, where e′  
and f′ are complementary edges for e and f, that is, edges representing a 
complementary strand.

Given a set of bridging reads in the condensed assembly graph, we construct 
a transition graph as follows. Each edge e in the condensed assembly graph 
corresponds to vertices eh and et in the transition graph, representing the head 
(start) and tail (end) of e, respectively. A complementary edge for e corresponds 
to the same vertices, but in the opposite order. Each (e, f)-read defines an 
undirected edge between et and fh in the transition graph with weight equal to 
transition(e, f).

Note that the transition graph is bipartite for the simple case when the two 
subgraphs of the condensed assembly graphs, corresponding to complementary 
strands, do not share vertices. However, it is not necessarily bipartite in the case of 
genomes that contain long inverted repeats. Flye thus applies Edmonds’ algorithm32 
to find a maximum weight matching in the transition graph and uses this matching 
for untangling the condensed assembly graph. For each edge (et, f h) in the 
constructed matching, Flye additionally checks the confidence of the transition 
between edges e and f (see Supplementary Note 13 for details) and untangles e and 
f for each edge (et, f h) in the transition graph that passes this check. Flye iteratively 
untangles edges in the condensed assembly graph and performs the corresponding 
iterative repeat resolution in the assembly graph.

Note that consecutive edges e and f in the condensed assembly graph are not 
necessarily consecutive in the assembly graph. Thus, after Flye untangles e and f, it 
uses one of the bridging (e, f)-reads to fill the gap between the end of e and the start 
of f in the assembly graph. Afterwards, most repeat edges in the assembly graph 
either represent long unbridged repeat edges (that are not bridged by any reads) 
or form paths consisting of repeat edges with total lengths typically exceeding the 
median read length.

Resolving unbridged repeats in the assembly graph. Flye takes advantage of the 
small variations between different repeat copies to resolve unbridged repeats. It 
identifies the variations between repeat copies, matches each read with a specific 
repeat copy using these variations, and uses these matched reads to derive a 
distinct consensus sequence for each repeat copy. The success of this approach is 
contingent on the presence of a sufficiently large number of variations between 
the different repeat copies. Therefore, the first step is to estimate the number and 
positions of variations between the repeat copies and to calculate the divergence of 
the various repeat copies from reads alone. Supplementary Note 14 describes how 
Flye calculates the divergence between repeat copies. The current version of Flye 
is limited to resolving unbridged repeats of multiplicity two in both haploid (for 
example, bacterial) and diploid (for example, human) genomes.

The idea of the algorithm is to assign each read to a specific repeat copy and 
then use the assigned reads to derive a distinct consensus sequence for each repeat 
copy. Figure 3 shows an example in which the 93 reads that traverse edges IN1 
and REP can be assigned to one repeat copy and the 75 reads that traverse edges 
IN2 and REP can be assigned to another repeat copy. However, it is unclear how 
to assign other reads mapping to the edge REP to a specific repeat copy. Flye 
uses reads starting in the incoming edges (93 and 75 reads in Fig. 3) to ‘move 
forward’ into the repeat and construct two different prefixes of the repeat REP 
corresponding to the two copies of the repeat. In parallel, it uses reads ending in 
the outgoing edges (71 and 76 reads in Fig. 3) to ‘move backward’ into the repeat 
and construct two different suffixes of this repeat.

NATURE BIOTECHNOLOGY | www.nature.com/naturebiotechnology



ARTICLESNATURE BIOTECHNOLOGY

In each iteration of the algorithm, reads are assigned to a specific repeat copy, 
and then all of the reads assigned to each repeat copy are used to construct a 
consensus sequence for that copy. Thus, as the algorithm proceeds, more reads are 
assigned to specific repeat copies and the consensus sequence for each repeat copy 
grows longer. The algorithm terminates when no new reads can be assigned to read 
copies and the consensus sequences stop growing in length. There are two goals: 
to obtain distinct consensus sequences for each repeat copy and to determine the 
correct pairings of incoming and outgoing edges for each repeat copy.

Supplementary Note 15 describes each successive iteration of the algorithm 
in detail. Supplementary Note 16 evaluates its accuracy on simulated data, and 
Supplementary Table 2 provides information about Flye′s performance on the 
unbridged repeats from the BACTERIA dataset.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All described datasets are publicly available through the corresponding 
repositories. The supplementary files, including the assemblies generated by 
Flye, are available at https://doi.org/10.5281/zenodo.1143753; NCTC PacBio 

reads: http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/; PacBio 
metagenome dataset: https://github.com/PacificBiosciences/DevNet/wiki/
Human_Microbiome_Project_MockB_Shotgun; PacBio C. elegans dataset: https://
github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set; PacBio/ONT 
S. cerevisiae dataset: https://github.com/fg6/YeastStrainsStudy. The ONT reads 
from the HUMAN and HUMAN+ datasets are available at https://github.com/
nanopore-wgs-consortium/NA12878. The matching Illumina reads are available 
as SRA project ERP001229. The Canu HUMAN+ assembly was downloaded from 
https://genomeinformatics.github.io/na12878update. MaSuRCA assemblies are 
available from http://masurca.blogspot.com/.

Code availability
The Flye code used in this study is available in the online version of the paper. The 
most recent Flye version is freely available at http://github.com/fenderglass/Flye.

References
 31. Gibbs, A. J. & McIntyre, G. A. "e diagram, a method for comparing 

sequences. Its use with amino acid and nucleotide sequences. Eur. J. Biochem. 
16, 1–11 (1970).

 32. Edmonds, J. Paths, trees, and $owers. Canad. J. Math. 17, 449–467 (1965).

NATURE BIOTECHNOLOGY | www.nature.com/naturebiotechnology



1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Pavel Pevzner

Last updated by author(s): Jan 8, 2019

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (Ŷ) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
KŶůǇ�ĐŽŵŵŽŶ�ƚĞƐƚƐ�ƐŚŽƵůĚ�ďĞ�ĚĞƐĐƌŝďĞĚ�ƐŽůĞůǇ�ďǇ�ŶĂŵĞ͖�ĚĞƐĐƌŝďĞ�ŵŽƌĞ�ĐŽŵƉůĞǆ�ƚĞĐŚŶŝƋƵĞƐ�ŝŶ�ƚŚĞ�DĞƚŚŽĚƐ�ƐĞĐƚŝŽŶ͘

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. &, ƚ, ƌ) with confidence intervals, effect sizes, degrees of freedom and W value noted 
'ŝǀĞ�W�ǀĂůƵĞƐ�ĂƐ�ĞǆĂĐƚ�ǀĂůƵĞƐ�ǁŚĞŶĞǀĞƌ�ƐƵŝƚĂďůĞ͘

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's Ě, Pearson's ƌ), indicating how they were calculated

KƵƌ�ǁĞď�ĐŽůůĞĐƚŝŽŶ�ŽŶ�ƐƚĂƚŝƐƚŝĐƐ�ĨŽƌ�ďŝŽůŽŐŝƐƚƐ�ĐŽŶƚĂŝŶƐ�ĂƌƚŝĐůĞƐ�ŽŶ�ŵĂŶǇ�ŽĨ�ƚŚĞ�ƉŽŝŶƚƐ�ĂďŽǀĞ͘

Software and code
Policy information about availability of computer code

Data collection No custom software were used for data collection.

Data analysis The manuscript presents a genome assembly algorithm called Flye. The code is available in the online version of the paper and at https://
github.com/fenderglass/Flye. Additional data, such as genome assemblies that were generated in our analysis are available at https://
doi.org/10.5281/zenodo.1143752. List of software used in the manuscript: Flye 2.3.5 (commit 20afeda), Canu 1.7.1 (commit dfa60b8), 
Falcon 0.3.0 (FALCON-Integrate commit 7498ef9), HINGE 0.5.0 (commit 79fdf66), Miniasm 0.2-r168-dirty (commit 40ec280) / Minimap2 
2.8-r711 (commit 8fc5f8d), QUAST 5.0.0 (commit de6973bb), Graphviz 2.38.0, Bandage 0.8.1

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All described datasets are publicly available through the corresponding repositories:  
* The supplementary files, including the assemblies generated by Flye, are available at https://doi.org/10.5281/zenodo.1143753 
* NCTC PacBio reads: http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/.  
* PacBio metagenome dataset: https://github.com/PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB_Shotgun. 
* PacBio C. elegans dataset: https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set 
* PacBio / ONT S. cerevisiae dataset: https://github.com/fg6/YeastStrainsStudy 



2

nature research  |  reporting sum
m

ary
O

ctober 2018

* The ONT reads from the HUMAN/HUMAN+ datasets are available at: https://github.com/nanopore-wgs-consortium/NA12878. The matching Illumina reads are 
available as SRA project ERP00122. The Canu HUMAN+ assembly was downloaded from: https://genomeinformatics.github.io/na12878update. MaSuRCA 
assemblies are available from: http://masurca.blogspot.com/

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences
For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Does not apply, since the study does not include any statistical analysis

Data exclusions No data were excluded from anlyses

Replication Does not apply, since the study describes deterministic algorithms and does not include statistical analysis. We have references all publicly 
available datasets and software versions to ensure reproducibility of our analysis.

Randomization Does not apply since our study does not involve data acquisition.

Blinding Does not apply since our study does not require case/control comparison

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


