
Mapping on reference genomes

Stefan Simm
simm@bio.uni-frankfurt.de

2019

Literature

Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Li et al. Genome Research (2008)
doi: 10.1101/gr.078212.108 (MAQ)

Ultrafast and memory-efficient alignment of short DNA sequences to
the human genome. Langmead et al. Genome Biology (2009)
doi:10.1186/gb-2009-10-3-r25 (BOWTIE)

Mapping Reads on a Genomic Sequence: An Algorithmic Overview and
a Practical Comparative Analysis
Schbath et al. Journal of computational biology (2012)
doi:10.1089/cmb.2012.0022 (Review)

NextGenMap: fast and accurate read mapping in highly polymorphic
genomes. Sedlazeck et al. Bioinformatics (2013)
doi:10.1093/bioinformatics/btt468 (NextGenMap)

Presenter
Presentation Notes
Primer on currently available short read alignment tools. The author is one of the authors of bowtie, and wrote tophat.

REFERENCE BASED MAPPING

4

Strategies to sequence long DNA molecules: Shotgun
sequencing

Read Pair 1
Read Pair 2
Read Pair 3
Read Pair 4
Read Pair 5
Read Pair 6
Read Pair 7
Read Pair 8
Read Pair 9
Read Pair 10
Read Pair 11

1. Randomly break template DNA into pieces
2. Add adapters of known sequence to the fragment ends
3. Sequence (typically) the ends of the fragments
4. Identify and remove adapter part from the determined sequences
5. Reconstruct template sequence from the sequence reads

Reconstruct template

5

Strategies to sequence long DNA molecules: Shotgun
sequencing and reference guided sequence assembly

Reference Sequence

1. Randomly break template DNA into pieces
2. Add adapters of known sequence to the fragment ends
3. Sequence (typically) the ends of the fragments
4. Remove adapter part from the determined sequences
5. Reconstruct template sequence from the sequence reads

1. Reference guided sequence assembly: map reads to a reference sequence.

a) e.g. genome of a different individual from the same species to study species diversity
b) e.g. genome of a closely related species

Reference sequence

Read Pair 1
Read Pair 2
Read Pair 3
Read Pair 4
Read Pair 5
Read Pair 6
Read Pair 7
Read Pair 8
Read Pair 9
Read Pair 10
Read Pair 11

Note that reads can map equally good to more than one position in the
reference genome, e.g. due to repeats in the reference.

Short Read Application: RNA seq mapping

from Oshlack et al. Genome Biology 2010, 11:220

Presenter
Presentation Notes
Summarizing mapped reads into a gene level count. (a) Mapped reads from a small region of the RNA-binding protein 39 (RBM39) gene are shown for LNCaP prostate cancer cells [90], human liver and human testis from the UCSC track. The three rows of RNA-seq data (blue and black graphs) are shown as a 'pileup track', where the y-axis at each location measures the number of mapped reads that overlap that location. Also shown are the genomic coordinates, gene model (labeled RBM39; blue boxes indicate exons) and conservation score across vertebrates. It is clear that many reads originate from regions with no known exons. (b) A schematic of a genomic region and reads that might arise from it. Reads are color-coded by the genomic feature from which they originate. Different summarization strategies will result in the inclusion or exclusion of different sets of reads in the table of counts. For example, including only reads coming from known exons will exclude the intronic reads (green) from contributing to the results. Splice junctions are listed as a separate class to emphasize both the potential ambiguity in their assignment (such as which exon should a junction read be assigned to) and the possibility that many of these reads may not be mapped because they are harder to map than continuous reads. CDS, coding sequence.

RNA-seq mapping helps building hypotheses
concerning gene structure

from Oshlack et al. Genome Biology 2010, 11:220

Presenter
Presentation Notes
Summarizing mapped reads into a gene level count. (a) Mapped reads from a small region of the RNA-binding protein 39 (RBM39) gene are shown for LNCaP prostate cancer cells [90], human liver and human testis from the UCSC track. The three rows of RNA-seq data (blue and black graphs) are shown as a 'pileup track', where the y-axis at each location measures the number of mapped reads that overlap that location. Also shown are the genomic coordinates, gene model (labeled RBM39; blue boxes indicate exons) and conservation score across vertebrates. It is clear that many reads originate from regions with no known exons. (b) A schematic of a genomic region and reads that might arise from it. Reads are color-coded by the genomic feature from which they originate. Different summarization strategies will result in the inclusion or exclusion of different sets of reads in the table of counts. For example, including only reads coming from known exons will exclude the intronic reads (green) from contributing to the results. Splice junctions are listed as a separate class to emphasize both the potential ambiguity in their assignment (such as which exon should a junction read be assigned to) and the possibility that many of these reads may not be mapped because they are harder to map than continuous reads. CDS, coding sequence.

Short Read Applications

• Genotyping

• RNA-seq, ChIP-seq, Methyl-seq, Ribo-seq

GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT

TCGGAAATT
CGGAAATTT
CGGAAATTT

GGAAATTTG

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC…
ATAC… …CC

 GAAATTTGC

Goal: identify variations

Goal: classify, measure significant peaks

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTA
TAC…

GCGCCCTA
GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT
TTGCGGTA

GCGGTATA

GTATAC…

TCGGAAATT
CGGAAATTT

CGGTATAC

TAGGCTATA
AGGCTATAT
AGGCTATAT
AGGCTATAT

GGCTATATG
CTATATGCG

…CC
…CC
…CCA
…CCA
…CCAT

ATAC…
C…
C…

…CCAT
…CCATAG TATGCGCCC

GGTATAC…
CGGTATAC

Challenges

• mapping millions/billions of reads to a large genome is
hard:
– how quickly can we map the reads to the genome?

– how do we deal with multiple mapping positions?

– how do we deal with sequencing errors and genetic

divergence/diversity

– how do we deal with reads that span intron-exon
boundaries?

SHORT READ ALIGNMENT

Short Read Alignment

• Given a reference and a set of reads, report at
least one “good” local alignment for each read if
one exists
– Approximate answer to: from where in

genome did the read originate?

What is “good”?
…TGATCATA…
 GATCAA

…TGATCATA…
 GAGAAT

better than

…TGATATTA…
 GATcaT

…TGATcaTA…
 GTACAT better than

– Fewer mismatches is better
– Failing to align a low-quality

base is better than failing to
align a high-quality base

Finding mapping positions is, in principle, very easy!

Genome to search in:
AATGAGACATGAA

Reads to search:
Query1: CATG
Query2: ATGT

Finding mapping positions is, in principle, very easy.

Naïve approach
Searchstring: AATGAGACATGAA

CATG

1234567891234

Genome: AATGAGACATGAA

Query1: CATG

Just slide the word along the sequence and stop when either
end of sequence is reached or mapping position is found.

Finding mapping positions is, in principle, very easy.

Naïve approach
Searchstring: AATGAGACATGAA

CATG

1234567891234

Genome: AATGAGACATGAA

Query1: CATG

Just slide the word along the sequence and stop when either
end of sequence is reached or mapping position is found.

Finding mapping positions is, in principle, very easy.

Naïve approach
Searchstring: AATGAGACATGAA

CATG

1234567891234

Genome: AATGAGACATGAA

Query1: CATG

Just slide the word along the sequence and stop when either
end of sequence is reached or mapping position is found.

Finding mapping positions is, in principle, very easy.

Naïve approach
Searchstring: AATGAGACATGAA

CATG

1234567891234

Genome: AATGAGACATGAA

Query1: CATG

Full match found,
Output result

Query1 maps to position 8-12 in Genome

Finding mapping positions is, in principle, very easy.

Naïve approach
Searchstring: AATGAGACATGAA

1234567891234

Genome: AATGAGACATGAA

Query2: TTGT

TTGT

At most n-k comparisons, with n is the length of the search
string, and k is the query length (read length).
This is not feasible for short read mapping.

Run Time of the Naïve approach

Naive approach:
• O(LG Lr Nr)
• LG  Size of the genome sequence
• Lr  Size of the read
• Nr  Number of the reads

Allowing gaps:
• Needleman Wunsch as dynamic programming

algorithm
• Same complexity O(LG Lr Nr)

Indexing speeds up searches

Indexing:
• Allow targeted search

• Genome distributed in

chapter / keywords

Indexing speeds up searches

1) Decide on a word length k, e.g.,
k=3

2) Build hash table from search
string, storing every word
occurring in S together with its
start position.

3) Process query and search for each
word occurring in Q1 whether it is
in the hash table.

4) Repeat for Q2.

Kmer Position
CAT 1,8
ATG 2,9
TGA 3,10
GAG 4
AGA 5
GAC 6
ACA 7
GAA 11

Kmer Position

GAG 1

AGA 2

Q1.1

Two lookups are sufficient to find Q1 in S

Searchstring: CATGAGACATGAA

Query1: GAGA
Query2: CATG
Query3: ATGT

Q1.2

Indexing handling mismatches?

The 2nd lookup indicates that Q3 is almost in S

2) How does the mapper deal with queries
that ‘almost’ match the reference?

Q3 matches the reference with one mismatch

Relevant for sensitivity and
specificity of the mapping.
Allowing more mismatches
increases sensitivity (consider
sequencing error and genetic
diversity) but decreases
specificity (more false positives).

O
ne m

ism
atch

Kmer Position
CAT 1,8
ATG 2,9
TGA 3,10
GAG 4
AGA 5
GAC 6
ACA 7
GAA 11

Kmer Position

ATG 1

TGT 2

Q3.1

O
ne m

ism
atch

Main differences between mapping approaches

Suffix tree Suffix array Seed hash tables
Many variants, incl. spaced seeds

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

Burrows Wheeler
Transformation

3) What kind of index does the mapper use?

Relevant for speed and memory footprint of
the mapper

HASH-BASED MAPPING

The “traditional way”: Hash tables

• Used by MAQ, Eland, SOAP, SHRiMP, ZOOM,
partially by Mosaik, SSAHA2, Stampy

Mapping Reads on a Genomic Sequence: An
Algorithmic Overview and a Practical Comparative
Analysis (2012) Sophie Schbath

Approach:
1) Use a ‘hash-function’ to transform pattern P into a

numerical hash value hP.

The use of ‘hashing’ in exact pattern search
(Rabin-Karp; O(n+m))

*JUST AN EXAMPLE: v(A)=1, v(C)=2, v(G)=3, v(T)=4; mod=3

‘AGC’

Sum up the values* for each
letter in P, divide by prime
number mod and take the

rest as hash value
hAGC = (1+2+3)%3

0

Approach:
1) Use a ‘hash-function’ to transform pattern P into a

numerical hash value hP.

2) Search the text T starting from left for words of length |P|
having the same hash value as P.

The use of ‘hashing’ in exact pattern search
(Rabin-Karp; O(n+m))

*JUST AN EXAMPLE: v(A)=1, v(C)=2, v(G)=3, v(T)=4; mod=3

‘AGC’

Sum up the values* for each
letter in P, divide by prime
number mod and take the

rest as hash value
hAGC = (1+2+3)%3

0

0

1

2

2

1

2 1 0 1
1

0
1

2 1
1 1

0
1

2

ACTTGAACAAGCTTGAGATCGAGAGGGGAGA

1

1

2

2

2

1

1

1

2

0

Approach:
1) Use a ‘hash-function’ to transform pattern P into a

numerical hash value hP.

2) Search the text T starting from left for words of length |P|
having the same hash value as P.

The use of ‘hashing’ in exact pattern search
(Rabin-Karp; O(n+m))

*JUST AN EXAMPLE: v(A)=1, v(C)=2, v(G)=3, v(T)=4; mod=3

‘AGC’

Sum up the values* for each
letter in P, divide by prime
number mod and take the

rest as hash value
hAGC = (1+2+3)%3

0

0

1

2

2

1

2 1 0 1
1

0
1

2 1
1 1

0
1

2

ACTTGAACAAGCTTGAGATCGAGAGGGGAGA

1

1

2

2

2

1

1

1

2

0

Approach:
1) Use a ‘hash-function’ to transform pattern P into a

numerical hash value hP.

2) Search the text T starting from left for words of length |P|
having the same hash value as P.

3) Given a word K with hk = hP was found, perform an exact
string comparison to verify that K == P. (Note, the
projection of words with length |P| in the space of hash
values is not injective (linkseindeutig!).

The use of ‘hashing’ in exact pattern search
(Rabin-Karp; O(n+m))

*JUST AN EXAMPLE: v(A)=1, v(C)=2, v(G)=3, v(T)=4; mod=3

Idea: Speed up pattern search by creating look-up tables storing the hash values
1) Search the text T starting from left for words of length k and compute their hash

value hk

2) Store the hash values together with the starting point of the corresponding words
in a hash table. Note, a hash table is nothing but a special way of indexing your
data, just like a phone book. This will provide direct access to your potential
matches in the pattern search once you know the hash value of P.

‘hashing’ in combination with hash tables help to
reduce the average time complexity of the pattern
search to O(1), i.e. constant in time*

*note that this ignores the time and space you need to populate your hash table!

ACTTGAACAAGCTTGAGATCGAGAGGGGAGA

2

2 1

1

1

2

2

1

2 1 0 1
1

1
1

2 1
1 1

1
1

2 1

1

2

1

1
2

0

Hash value Position in string

0 10,11,20,25,26

1 1,2,6,7,8, 12,15,18,19,21,22,23,24,27,28

2 3,4,5,9,13,14,16,17,29

Seed and extend with local alignment

 • SSAHA & Stampy:
– Use k-mer (shorter than read) to find it in the

genome
– Seed regions will be extended by Needleman-

Wunsch

• Drawback:
– Many regions have to be analyzed in the extend

phase

Seed and Extend the pigeon hole principle

• MAQ, SOAP, RMAP:
– Chop read in k-mers (allowing errors)
– All k-mers in the genome + correct order + adjacent to

each other  read found

Sophie Schbath et al. 2012

Seed and Extend the q-gram filtering

• SHRiMP2 & RazerS:

– Chop read in k-mers but overlapping
– If enough k-mers map in a small region a more careful

alignment will be done

• Drawback:
– List to large to be kept in memory
– Characters stored in 8 bits (2 bits per Nucleotide) but

ambiguity code has to be overcome

MAQ uses seed pairs as it allows, per default no more than 2 mismatches between
seed and reference. As each 28 mere is represented by 4 non-overlapping seeds, we
always have at least 2 seeds that must result in a perfect match to the reference.

Reference

AGACTGAGGTACGTAGACCATGATCGATACCCAAAAAGCTAGA

GTACGTAGACGATGATCCATACCCAAAA
Read (28 bp prefix)

Why does MAQ* use pigeon hole principle and spaced
seeds for mapping?
Issues to solve by seed and extend:
• Shorter seeds map more regions on the genome
• Minimum of 10 nucleotides per k-mer
• Allowing “Don’t care” positions to be able to find seeds 

spaced seed approach

gatgtgacatacctgttctactgaggct

GENOME
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct

hash value for template 1: 832589471

Example: read1 - gatgtgacatacctgttctactgaggct

MAQ*: pigeon hole principle for mapping

*Li et al Genome Res. 2008. 18: 1851-1858

Build six hash tables (templates) for the reads (only first 28
bp are considered) only from the colored nucleotides

HASH 2057673064
gatgtgacatacctgttctactgaggct 3178370917
gatgtgacatacctgttctactgaggct 773088662
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct

1856750201
2510061809
119777054

compute hash values for spaced seeds in
reference (on both strands and for one of
the six templates) and perform lookups in
hash tables of the reads

6 ‘Templates’

GENOME
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct

1258119214

gatgtgacatacctgttctactgaggct

Example: read1 - gatgtgacatacctgttctactgaggct

Build six hash tables for the reads (only first 28 bp)
using only the colored nucleotides

HASH 2057673064
gatgtgacatacctgttctactgaggct 3178370917
gatgtgacatacctgttctactgaggct 773088662
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct

1856750201
2510061809
119777054

continue with next word in the reference
from the same template….
until the entire reference sequence has
been used.

MAQ*: pigeon hole principle for mapping

*Li et al Genome Res. 2008. 18: 1851-1858

GENOME
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcaggtgt
gtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtttcc
gggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttcaaa
acttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgacatctt
attttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagcctttatg
atgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaatagaa
cggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaagaaca
gttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataacgccc
ttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaacatc
gaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaaagat
tatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaagaaac
attaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactgaa
ggct
 2057673064

HIT: Calculate the
sum of qualities of
mismatched bases q
over the whole
length of the read
and store together
with hit position.

For each read, MAQ
stores score and
position of only the 2
best hits and the
number of 0-, 1-, and
2-mismatch seed
positions

MAQ *: pigeon hole principle for mapping

gatgtgacatacctgttctactgaggct

Example: read1 - gatgtgacatacctgttctactgaggct

Build six hash tables for the reads (only first 28 bp)
using only the colored nucleotides

HASH 2057673064
gatgtgacatacctgttctactgaggct 3178370917
gatgtgacatacctgttctactgaggct 773088662
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct

1856750201
2510061809
119777054

*Li et al Genome Res. 2008. 18: 1851-1858

Presenter
Presentation Notes
MAQ scores hits on the sum of the read quality of mismatched bases. If mult hits, randomly selects one. Remembers position and score of two best scored hits and # of mismatch hits 0,1,2 in seed region.

TRANS to BWT

gatgtgacatacctgttctactgaggct

GENOME
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct

hash value for template 2

Example: read1 - gatgtgacatacctgttctactgaggct

MAQ* uses spaced seeds for mapping

Li et al Genome Res. 2008. 18: 1851-1858

Build six hash tables for the reads (only first 28 bp)
using only the colored nucleotides

HASH 2057673064
gatgtgacatacctgttctactgaggct 3178370917
gatgtgacatacctgttctactgaggct 773088662
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct

1856750201
2510061809
119777054

compute hash values for spaced seeds in
reference (on both strands) and perform
lookup in hash tables of the reads

gatgtgacatacctgttctactgaggct

GENOME
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct

hash value 3

Example: read1 - gatgtgacatacctgttctactgaggct

MAQ* uses spaced seeds for mapping

Li et al Genome Res. 2008. 18: 1851-1858

Build six hash tables for the reads (only first 28 bp)
using only the colored nucleotides

HASH 2057673064
gatgtgacatacctgttctactgaggct 3178370917
gatgtgacatacctgttctactgaggct 773088662
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct

1856750201
2510061809
119777054

compute hash values for spaced seeds in
reference (on both strands) and perform
lookup in hash tables of the reads

gatgtgacatacctgttctactgaggct

GENOME
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct

hash value 4

Example: read1 - gatgtgacatacctgttctactgaggct

MAQ* uses spaced seeds for mapping

Li et al Genome Res. 2008. 18: 1851-1858

Build six hash tables for the reads (only first 28 bp)
using only the colored nucleotides

HASH 2057673064
gatgtgacatacctgttctactgaggct 3178370917
gatgtgacatacctgttctactgaggct 773088662
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct

1856750201
2510061809
119777054

compute hash values for spaced seeds in
reference (on both strands) and perform
lookup in hash tables of the reads

gatgtgacatacctgttctactgaggct

GENOME
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct

hash value 5

Example: read1 - gatgtgacatacctgttctactgaggct

MAQ* uses spaced seeds for mapping

Li et al Genome Res. 2008. 18: 1851-1858

Build six hash tables for the reads (only first 28 bp)
using only the colored nucleotides

HASH 2057673064
gatgtgacatacctgttctactgaggct 3178370917
gatgtgacatacctgttctactgaggct 773088662
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct

1856750201
2510061809
119777054

compute hash values for spaced seeds in
reference (on both strands) and perform
lookup in hash tables of the reads

gatgtgacatacctgttctactgaggct

GENOME
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct

hash value 6

Example: read1 - gatgtgacatacctgttctactgaggct

MAQ* uses spaced seeds for mapping

Li et al Genome Res. 2008. 18: 1851-1858

Build six hash tables for the reads (only first 28 bp)
using only the colored nucleotides

HASH 2057673064
gatgtgacatacctgttctactgaggct 3178370917
gatgtgacatacctgttctactgaggct 773088662
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct

1856750201
2510061809
119777054

compute hash values for spaced seeds in
reference (on both strands) and perform
lookup in hash tables of the reads

1. At the alignment stage, MAQ first searches for the ungapped match with
lowest mismatch score, defined as the sum of qualities at mismatching
bases.

2. MAQ only considers positions that have two or fewer mismatches in the
first 28 bp (default parameters; speed-up).

3. Sequences that fail to reach a mismatch score threshold but whose mate
pair is mapped are searched with a gapped alignment algorithm in the
regions defined by the mate pair.

4. To evaluate the reliability of alignments, MAQ assigns each individual
alignment a phred-scaled quality score (capped at 99), which measures
the probability that the true alignment is not the one found by MAQ.

5. MAQ always reports a single alignment, and if a read can be aligned
equally well to multiple positions, MAQ will randomly pick one position
and give it a mapping quality zero. Because their mapping score is set to
zero, reads that are mapped equally well to multiple positions will not
contribute to variant calling.

MAQ: An overview

NextGenMap

• Hash-based read mapper bridging:
1. speed
2. ability to map reads in highly polymorphic regions

• pitfalls:
1. Mixing single end and paired end reads is not

supported  corrupt the mapping results
2. Not recommended to change parameters –kmer and

kmer-skip
3. Values between 0.5 and 0.8 give the best trade-off

between speed and sensitivity

Algorithm Workflow

1. Indexing the reference genome (only once)

2. Identification of possible mapping regions on the
reference genome (candidate mapping region
(CMR) search)

3. Computation of alignment scores for all CMRs
found in step 2

4. Computation of the full alignment for the best
scoring CMR from step 3

Indexing the reference genome

• k-mer = 13 bp

• Every 3. position

• Only A, C, G, T

• Only + strand

Indexing the reference genome

• GP = genomic positions
– Consecutively k-mer blocks
– Saving start position

• HT = Hash table of k-mers

– Lexicographic ordered
– Frequency (numbered

serially)

Indexing the reference genome

• K-mer >1,000 times excluded

• tHT count frequencies of k-mers in genome

Identification of CMR

• R = read of length
9bp

• G = reference
Genome

• Step-size = 2

• k-mer size = 3bp

Identification of CMR

• Position 1 not found due to step-size =2
• Saving startpoints in reference genome
• Shift of readstart to startposition
• Allow modulo 8 (bit-shift operation) due to polymorphic

regions to reduce start positions

Computation of CMRs

uninformative

informative

Computation of CMRs

= 𝝈𝝈

• Calculating the ratio of

 Average read seed count

 Perfectly matching read

• σ = 1  perfect reads

• σ = 0  very different reads

• Calculating genomic start points

 FR  Frequency distribution

 Genomic position with seed

word count above ϴR

Presenter
Presentation Notes
Auf Fehler der Slide hinweisen.
we compute for a random sample of B reads maxfFRg for each read R and the
average
Fmax =
1
B
XB
j=1
maxfFRj g; (2)
where B = 10; 000.

Computation of alignment scores

1. Calculating the read alignment score

2. c defines consecutive insertions deletions

dependent on the read length (l)

3. MASon (Rescheneder et al. 2012) for

alignment

BURROWS-WHEELER TRANSFORM
BASED ALGORITHMS

Suffix Trees / Suffix Tries

• Advantage:
– Hashing performs poor for repeating regions

• Each suffix of a word is represented as path from
leave to root
– Size of tree proportional to size of genome
– Building time proportional to size of genome
– Search time O(Lr)

Suffix Trees

• Advantage:
– Hashing performs poor for repeating regions
– Repeating regions are squeezed into one path

Mapping Reads on a Genomic Sequence: An
Algorithmic Overview and a Practical Comparative
Analysis (2012) Sophie Schbath

Suffix Arrays

• Problem of the trees and tries:
– Large genomes will not fit in the RAM

• Array is the set of suffixes sorted lexicographically

– Trick 1: save the startposition of the suffix

Mapping Reads on a Genomic Sequence: An Algorithmic Overview and a Practical Comparative Analysis
(2012) Sophie Schbath

Trick 2: The Burrows-Wheeler Transform

• Invented by David Wheeler in 1983 (bell labs), pub.
1994

• Used in data compression (bzip2)

• Used in 2003 on the human genome to define exact
word matches (originally for microarray probe
design)

• First used for short read alignment by bowtie, now
adopted by bwa (maq author) and SOAP2

BWT(S)

S a c a a c g

The Burrows-Wheeler Transform

a c a a c g $
c a a c g $ a
a a c g $ a c
a c g $ a c a
c g $ a c a a
g $ a c a a c
$ a c a a c g

$

sort
lexicographically

$ a c a a c g
a a c g $ a c
a c a a c g $
a c g $ a c a
c a a c g $ a
c g $ a c a a
g $ a c a a c

Burrows Wheeler Transform (BWT)

Generate matrix by
1. Appending a $ to the end of the string S

that should be indexed. $ should have 2
properties
1. it must not occur in the string
2. it should be lexicographically

smaller than any character in S
2. generate all cyclic permutations of S
3. sort the resulting matrix

lexicographically (the line beginning
with the $ is the first to occur in the
matrix.

BWT(S)
1st

1st

The matrix has the property of last first (LF) mapping: The ith
occurrence of character X in the last column corresponds to the same
text character as the ith occurrence of X in the first column

Burrows Wheeler Transform (BWT)

The matrix has the property of
last first (LF) mapping: This can
be used to reconstruct the
original text from BWT(S) using
the UNPERMUTE algorithm.

BWT(S)
1st

1st

Burrows Wheeler Transform (BWT)

BWT(S)
1st

1st

The matrix has the property of last first (LF) mapping: This can be used to
search for a text within BWT(S) using the EXACTMATCH algorithm.
Key aspects:
1) Matrix is sorted lexicographically. Thus, rows beginning with a given

sequence appear consecutively.
2) EXACTMATCH algorithm calculates the range of matrix rows beginning

with successively longer suffixes of the query.
3) At each step, the size of the range either shrinks or remains the same.
4) When the algorithm completes, rows beginning with S0 (the entire query)

correspond to exact occurrences of the query in the text.

c t g a a a c t g g t $
t g a a a c t g g t $ c
g a a a c t g g t $ c t
a a a c t g g t $ c t g
a a c t g g t $ c t g a
a c t g g t $ c t g a a
c t g g t $ c t g a a a
t g g t $ c t g a a a c
g g t $ c t g a a a c t
g t $ c t g a a a c t g
t $ c t g a a a c t g g
$ c t g a a a c t g g t

Original string: ctgaaactggt
Put a $ on the end
create cyclic rotations of the string...

Presenter
Presentation Notes
Now I’ll show the basic concept of the burroughs-wheeler transformation. It’s reversible, and gives an easier to compress string, and people have developed some fast algorithms to search it.

In the case of bowtie, the entire genome is the string that undergoes transformation.

$ c t g a a a c t g g t
a a a c t g g t $ c t g
a a c t g g t $ c t g a
a c t g g t $ c t g a a
c t g a a a c t g g t $
c t g g t $ c t g a a a
g a a a c t g g t $ c t
g g t $ c t g a a a c t
g t $ c t g a a a c t g
t $ c t g a a a c t g g
t g a a a c t g g t $ c
t g g t $ c t g a a a c

Alphabetically sort the permuted strings, first column is the
“genome dictionary” last column is the Burrows-wheeler
transformation

11
3
4
5
0
6
2
8
9

10
1
7

$ c t g a a a c t g g t
a a a c t g g t $ c t g
a a c t g g t $ c t g a
a c t g g t $ c t g a a
c t g a a a c t g g t $
c t g g t $ c t g a a a
g a a a c t g g t $ c t
g g t $ c t g a a a c t
g t $ c t g a a a c t g
t $ c t g a a a c t g g
t g a a a c t g g t $ c
t g g t $ c t g a a a c

Look up ctgg: start at the end with g, lookup in genome
dictionary
top(g) = 6; bot(g) = 8

0

1

2

3

4

5

6

7

8

9

10

11

$ c t g a a a c t g g t
a a a c t g g t $ c t g
a a c t g g t $ c t g a
a c t g g t $ c t g a a
c t g a a a c t g g t $
c t g g t $ c t g a a a
g a a a c t g g t $ c t
g g t $ c t g a a a c t
g t $ c t g a a a c t g
t $ c t g a a a c t g g
t g a a a c t g g t $ c
t g g t $ c t g a a a c

Does gg exist, and what are top(gg) and bot(gg)?
Yes, gg exists.
top(gg) = top(g) + #g before g-block in bwt = 6 + 1 = 7
bot(gg) = top(gg) + # of gg in genome – 1 = 7 + 1 – 1 = 7

0

1

2

3

4

5

6

7

8

9

10

11

$ c t g a a a c t g g t
a a a c t g g t $ c t g
a a c t g g t $ c t g a
a c t g g t $ c t g a a
c t g a a a c t g g t $
c t g g t $ c t g a a a
g a a a c t g g t $ c t
g g t $ c t g a a a c t
g t $ c t g a a a c t g
t $ c t g a a a c t g g
t g a a a c t g g t $ c
t g g t $ c t g a a a c

Does tgg exist, and what are top(tgg) and bot(tgg)?
Yes, tgg exists.
top(tgg) = top(t) + #t before gg-block in bwt = 9 + 2 = 11
bot(tgg) = top(tgg) + # of tgg in genome – 1 = 11 + 1 – 1 = 11

0

1

2

3

4

5

6

7

8

9

10

11

$ c t g a a a c t g g t
a a a c t g g t $ c t g
a a c t g g t $ c t g a
a c t g g t $ c t g a a
c t g a a a c t g g t $
c t g g t $ c t g a a a
g a a a c t g g t $ c t
g g t $ c t g a a a c t
g t $ c t g a a a c t g
t $ c t g a a a c t g g
t g a a a c t g g t $ c
t g g t $ c t g a a a c

Does ctgg exist, and what are top(ctgg) and bot(ctgg)?
Yes, ctgg exists.
top(ctgg) = top(c) + #c before tgg-block in bwt = 4 + 1 = 5
bot(ctgg) = top(ctgg) + # of ctgg in genome – 1 = 5 + 1 – 1 = 5

0

1

2

3

4

5

6

7

8

9

10

11

$ c t g a a a c t g g t
a a a c t g g t $ c t g
a a c t g g t $ c t g a
a c t g g t $ c t g a a
c t g a a a c t g g t $
c t g g t $ c t g a a a
g a a a c t g g t $ c t
g g t $ c t g a a a c t
g t $ c t g a a a c t g
t $ c t g a a a c t g g
t g a a a c t g g t $ c
t g g t $ c t g a a a c

0

1

2

3

4

5

6

7

8

9

10

11

Found ctgg at position 5, which is position 6 in
original string ctgaaactggt

11
3
4
5
0
6
2
8
9

10
1
7

Coping with mismatches: Query GGTA

Ranges of the matrix
rows beginning with
the suffix observed to
that point.

Empty range:
Abort or backtrack.

Presenter
Presentation Notes
Exact matching versus inexact alignment. Illustration of how EXACTMATCH (top) and Bowtie's aligner (bottom) proceed when there is no exact match for query 'ggta' but there is a one-mismatch alignment when 'a' is replaced by 'g'. Boxed pairs of numbers denote ranges of matrix rows beginning with the suffix observed up to that point. A red X marks where the algorithm encounters an empty range and either aborts (as in EXACTMATCH) or backtracks (as in the inexact algorithm). A green check marks where the algorithm finds a nonempty range delimiting one or more occurrences of a reportable alignment for the query.

Quality-aware, greedy, randomized, depth-first search
through the space of possible alignments.

1. The search proceeds similarly to
EXACTMATCH

2. If range becomes empty (suffix does not
occur in text), the algorithm backtracks
and selects an already-matched query
position and substitutes a different base
there. The EXACTMATCH algorithm
resumes from this modified position.

3. The algorithm allows only substitutions
that yield a modified suffix that occurs at
least once in the text. If there are multiple
candidate substitution positions, then the
algorithm greedily selects a position with
a minimal quality value.

4. Because search is greedy, the first valid
alignment is not necessarily the best
(Number of mismatches and quality).
Bowtie has parameters to cope with this
(--best or –all (all alignments).

5. Excessive Backtracking should be avoided.
Note, we start from the low quality end...

Presenter
Presentation Notes
Exact matching versus inexact alignment. Illustration of how EXACTMATCH (top) and Bowtie's aligner (bottom) proceed when there is no exact match for query 'ggta' but there is a one-mismatch alignment when 'a' is replaced by 'g'. Boxed pairs of numbers denote ranges of matrix rows beginning with the suffix observed up to that point. A red X marks where the algorithm encounters an empty range and either aborts (as in EXACTMATCH) or backtracks (as in the inexact algorithm). A green check marks where the algorithm finds a nonempty range delimiting one or more occurrences of a reportable alignment for the query.

Coping with mismatches

• Our alignment policy allows a limited number of mismatches and prefers
alignments where the sum of the quality values at all mismatched
positions is low.

• The search proceeds similarly to EXACTMATCH, calculating matrix ranges
for successively longer query suffixes.

• If the range becomes empty (a suffix does not occur in the text), then the

algorithm may select an already-matched query position and substitute a
different base there. The EXACTMATCH algorithm resumes from this
position.

• The algorithm selects only those substitutions that yield a modified suffix
that occurs at least once in the text. If there are multiple candidate
substitution positions, then the algorithm greedily selects a position with
a minimal quality value.

Bowtie: Avoidance of excessive backtracking
(assuming 1 mismatch)

Problem: The aligner spends most of its effort fruitlessly backtracking to positions
close to the 3' end of the query (error prone).

Solution Part1: double indexing (similar to MAQ), using two indices for the genome
• Index 1: BWT of the original genome
• Index 2: BWT of the genome with reversed character order (not reverse

complemented!)
Solution Part2: The aligner is invoked twice
• First round: Index 1 is used, and the aligner is started with original read with the

constraint that it must not substitute a position in the query’s right half (3’ end).
• Second round: Index 2 is used, and the aligner is started with the reversed read,

again with the constraint that it must not substitute a position in the reversed
query’s right half (originally and still the 5’ end).

Solution Part3: set a hard upper limit of backtracks to be performed.

5’ 3’
5’ 3’

Reference

exact substitute

3’ 5’
Reference

3’ 5’ exact substitute

The three phases of Bowtie

In the case of 2 (or more mismatches):
• Bowtie uses the first 28 bp as seed
• The seed is split into a high quality 5’

half (hi-half) and a low quality 3’ half
(lo-half)

• For up to 2 mismatches we have four
scenarios:

1. no mismatches in seed
2. 1-2 mismatches only in the lo-half
3. 1-2 mismatches only in the hi-half
4. 1 mismatch each in hi- and low-

half
• Any number of mismatches can occur

in non-seed part (subject to other
thresholds).

fu
ll

re
ad

Changes in Bowtie2

Supports gapped, local, and paired-end alignment modes:
• For reads longer than about 50 bp Bowtie 2 is generally

faster, more sensitive, and uses less memory.

• Bowtie 2 supports local alignment, which doesn’t require
reads to align end-to-end. Local alignments might be
“trimmed” (“soft clipped”) at one or both extremes in a
way that optimizes alignment score.

• There is no upper limit on read length in Bowtie 2.

• Bowtie 2 allows alignments to overlap ambiguous
characters (e.g. Ns) in the reference.

http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#end-to-end-alignment-versus-local-alignment
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#ambiguous-characters
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#ambiguous-characters

Bowtie2: Seed extraction & alignment

Seed extraction:
• Substrings of the read (“seed strings”) are extracted at

regular intervals along the read and its reverse
complement.

• Seed strings are contiguous (i.e. they are not spaced
seeds) and may or may not overlap each other.

FM Index assisted seed alignment :
• Find ungapped alignments for each based on Bowtie1
• Seed strings can be aligned with up to 1 mismatch.

Bowtie2: Seed alignment priorization & alignment

Priorization:
• “seed‐hit range”  A seed‐hit range describes a range

of rows in the Burrows‐Wheeler matrix that begin with a
reference substring that is within 0 or 1 mismatches of
the seed substring.

• Bowtie 2 proceeds by repeatedly selecting a row in a
random weighted fashion using these weights.

Alignment:
• Bowtie 2 extracts flanking characters from the reference
• Solves a rectangular dynamic programming problem to

find high‐scoring full alignments in the vicinity of the
seed hit.

• Up to 2 mismatches in first 28 bases reported by Maq
(default) and 1-2 mismatches by Bowtie1/2 in the seed.

• If >=1 matching seed regions exist for one read Bowtie2

has a dynamic programming effort limit of 15. After 15
attempts not performing better than the best so far.

• Bowtie outperforms Bowtie2 in case of short reads (<=50
nt) in some cases.

• Bowtie convert N to A, C, G or T randomly / Bowtie2
accepts N’s

Watch out for the following…

Presenter
Presentation Notes
TRANS to SAM

	Mapping on reference genomes
	Literature
	Reference Based Mapping
	Strategies to sequence long DNA molecules: Shotgun sequencing
	Strategies to sequence long DNA molecules: Shotgun sequencing and reference guided sequence assembly
	Slide Number 6
	Slide Number 7
	Short Read Applications
	Challenges
	Short Read Alignment
	Short Read Alignment
	Finding mapping positions is, in principle, very easy!
	Finding mapping positions is, in principle, very easy.
	Finding mapping positions is, in principle, very easy.
	Finding mapping positions is, in principle, very easy.
	Finding mapping positions is, in principle, very easy.
	Finding mapping positions is, in principle, very easy.
	Run Time of the Naïve approach
	Indexing speeds up searches
	Indexing speeds up searches
	Indexing handling mismatches?
	Main differences between mapping approaches
	Hash-Based Mapping
	The “traditional way”: Hash tables
	The use of ‘hashing’ in exact pattern search�(Rabin-Karp; O(n+m))
	The use of ‘hashing’ in exact pattern search�(Rabin-Karp; O(n+m))
	The use of ‘hashing’ in exact pattern search�(Rabin-Karp; O(n+m))
	The use of ‘hashing’ in exact pattern search�(Rabin-Karp; O(n+m))
	‘hashing’ in combination with hash tables help to reduce the average time complexity of the pattern search to O(1), i.e. constant in time*�
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	NextGenMap
	Algorithm Workflow
	Indexing the reference genome
	Indexing the reference genome
	Indexing the reference genome
	Identification of CMR
	Identification of CMR
	Computation of CMRs
	Computation of CMRs
	Computation of alignment scores
	Burrows-Wheeler transform based algorithms
	Suffix Trees / Suffix Tries
	Suffix Trees
	Suffix Arrays
	Trick 2: The Burrows-Wheeler Transform
	The Burrows-Wheeler Transform
	Burrows Wheeler Transform (BWT)
	Burrows Wheeler Transform (BWT)
	Burrows Wheeler Transform (BWT)
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Coping with mismatches: Query GGTA
	Quality-aware, greedy, randomized, depth-first search through the space of possible alignments.
	Coping with mismatches
	Bowtie: Avoidance of excessive backtracking �(assuming 1 mismatch)
	The three phases of Bowtie
	Changes in Bowtie2
	Bowtie2: Seed extraction & alignment
	Bowtie2: Seed alignment priorization & alignment
	Slide Number 78
	Slide Number 79

