
Mapping on reference genomes 

Stefan Simm 
simm@bio.uni-frankfurt.de 

2019 



Literature 

Mapping short DNA sequencing reads and calling variants using 
mapping quality scores. Li et al. Genome Research (2008) 
doi: 10.1101/gr.078212.108 (MAQ) 
 
Ultrafast and memory-efficient alignment of short DNA sequences to 
the human genome. Langmead et al. Genome Biology (2009) 
doi:10.1186/gb-2009-10-3-r25 (BOWTIE) 
 
Mapping Reads on a Genomic Sequence: An Algorithmic Overview and 
a Practical Comparative Analysis  
Schbath et al. Journal of computational biology (2012)  
doi:10.1089/cmb.2012.0022 (Review) 
 
NextGenMap: fast and accurate read mapping in highly polymorphic 
genomes. Sedlazeck et al. Bioinformatics (2013) 
doi:10.1093/bioinformatics/btt468 (NextGenMap) 

Presenter
Presentation Notes
Primer on currently available short read alignment tools. The author is one of the authors of bowtie, and wrote tophat.



REFERENCE BASED MAPPING 
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Strategies to sequence long DNA molecules: Shotgun 
sequencing 

Read Pair 1 
Read Pair 2 
Read Pair 3 
Read Pair 4 
Read Pair 5 
Read Pair 6 
Read Pair 7 
Read Pair 8 
Read Pair 9 
Read Pair 10 
Read Pair 11 

1. Randomly break template DNA into pieces 
2. Add adapters of known sequence to the fragment ends 
3. Sequence (typically) the ends of the fragments  
4. Identify and remove adapter part from the determined sequences 
5. Reconstruct template sequence from the sequence reads 

Reconstruct template 
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Strategies to sequence long DNA molecules: Shotgun 
sequencing and reference guided sequence assembly  

Reference Sequence 

1. Randomly break template DNA into pieces 
2. Add adapters of known sequence to the fragment ends 
3. Sequence (typically) the ends of the fragments  
4. Remove adapter part from the determined sequences 
5. Reconstruct template sequence from the sequence reads 

1. Reference guided sequence assembly: map reads to a reference sequence.  

a) e.g. genome of a different individual from the same species to study species diversity 
b) e.g. genome of a closely related species 

Reference sequence  

Read Pair 1 
Read Pair 2 
Read Pair 3 
Read Pair 4 
Read Pair 5 
Read Pair 6 
Read Pair 7 
Read Pair 8 
Read Pair 9 
Read Pair 10 
Read Pair 11 

Note that reads can map equally good to more than one position in the 
reference genome, e.g. due to repeats in the reference. 



Short Read Application: RNA seq mapping 

from Oshlack et al. Genome Biology 2010, 11:220 

Presenter
Presentation Notes
Summarizing mapped reads into a gene level count. (a) Mapped reads from a small region of the RNA-binding protein 39 (RBM39) gene are shown for LNCaP prostate cancer cells [90], human liver and human testis from the UCSC track. The three rows of RNA-seq data (blue and black graphs) are shown as a 'pileup track', where the y-axis at each location measures the number of mapped reads that overlap that location. Also shown are the genomic coordinates, gene model (labeled RBM39; blue boxes indicate exons) and conservation score across vertebrates. It is clear that many reads originate from regions with no known exons. (b) A schematic of a genomic region and reads that might arise from it. Reads are color-coded by the genomic feature from which they originate. Different summarization strategies will result in the inclusion or exclusion of different sets of reads in the table of counts. For example, including only reads coming from known exons will exclude the intronic reads (green) from contributing to the results. Splice junctions are listed as a separate class to emphasize both the potential ambiguity in their assignment (such as which exon should a junction read be assigned to) and the possibility that many of these reads may not be mapped because they are harder to map than continuous reads. CDS, coding sequence. 



RNA-seq mapping helps building hypotheses 
concerning gene structure 

from Oshlack et al. Genome Biology 2010, 11:220 
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Summarizing mapped reads into a gene level count. (a) Mapped reads from a small region of the RNA-binding protein 39 (RBM39) gene are shown for LNCaP prostate cancer cells [90], human liver and human testis from the UCSC track. The three rows of RNA-seq data (blue and black graphs) are shown as a 'pileup track', where the y-axis at each location measures the number of mapped reads that overlap that location. Also shown are the genomic coordinates, gene model (labeled RBM39; blue boxes indicate exons) and conservation score across vertebrates. It is clear that many reads originate from regions with no known exons. (b) A schematic of a genomic region and reads that might arise from it. Reads are color-coded by the genomic feature from which they originate. Different summarization strategies will result in the inclusion or exclusion of different sets of reads in the table of counts. For example, including only reads coming from known exons will exclude the intronic reads (green) from contributing to the results. Splice junctions are listed as a separate class to emphasize both the potential ambiguity in their assignment (such as which exon should a junction read be assigned to) and the possibility that many of these reads may not be mapped because they are harder to map than continuous reads. CDS, coding sequence. 



Short Read Applications 

• Genotyping 
 
 

 
• RNA-seq, ChIP-seq, Methyl-seq, Ribo-seq 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 

TCGGAAATT 
CGGAAATTT 
CGGAAATTT 

GGAAATTTG 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
ATAC… …CC 

 GAAATTTGC 

Goal: identify variations 

Goal: classify, measure significant peaks 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTA
TAC… 

GCGCCCTA 
GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 
AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
CGGTATAC 



Challenges 

• mapping millions/billions of reads to a large genome is 
hard: 
– how quickly can we map the reads to the genome? 

 
– how do we deal with multiple mapping positions? 

 
– how do we deal with sequencing errors and genetic 

divergence/diversity  
 

– how do we deal with reads that span intron-exon 
boundaries?  



SHORT READ ALIGNMENT 



Short Read Alignment 

• Given a reference and a set of reads, report at 
least one “good” local alignment for each read if 
one exists 
– Approximate answer to: from where in 

genome did the read originate? 
 
 

What is “good”?   
…TGATCATA… 
  GATCAA 

…TGATCATA… 
  GAGAAT 

better than 

…TGATATTA… 
  GATcaT 

…TGATcaTA… 
  GTACAT better than 

– Fewer mismatches is better 
– Failing to align a low-quality 

base is better than failing to 
align a high-quality base 



Finding mapping positions is, in principle, very easy! 

Genome to search in: 
AATGAGACATGAA 

Reads to search: 
Query1: CATG 
Query2: ATGT 



Finding mapping positions is, in principle, very easy. 

Naïve approach 
Searchstring: AATGAGACATGAA 

CATG 

1234567891234 

Genome: AATGAGACATGAA 

Query1: CATG 

Just slide the word along the sequence and stop when either 
end of sequence is reached or mapping position is found. 



Finding mapping positions is, in principle, very easy. 

Naïve approach 
Searchstring: AATGAGACATGAA 

CATG 

1234567891234 

Genome: AATGAGACATGAA 

Query1: CATG 

Just slide the word along the sequence and stop when either 
end of sequence is reached or mapping position is found. 



Finding mapping positions is, in principle, very easy. 

Naïve approach 
Searchstring: AATGAGACATGAA 

CATG 

1234567891234 

Genome: AATGAGACATGAA 

Query1: CATG 

Just slide the word along the sequence and stop when either 
end of sequence is reached or mapping position is found. 



Finding mapping positions is, in principle, very easy. 

Naïve approach 
Searchstring: AATGAGACATGAA 

CATG 

1234567891234 

Genome: AATGAGACATGAA 

Query1: CATG 

Full match found, 
Output result 

Query1 maps to position 8-12 in Genome 



Finding mapping positions is, in principle, very easy. 

Naïve approach 
Searchstring: AATGAGACATGAA 

1234567891234 

Genome: AATGAGACATGAA 

Query2: TTGT 

TTGT 

At most n-k comparisons, with n is the length of the search 
string, and k is the query length (read length). 
This is not feasible for short read mapping. 



Run Time of the Naïve approach 

Naive approach: 
• O(LG Lr Nr) 
• LG  Size of the genome sequence 
• Lr   Size of the read 
• Nr  Number of the reads 
 
 
Allowing gaps: 
• Needleman Wunsch as dynamic programming 

algorithm 
• Same complexity O(LG Lr Nr) 



Indexing speeds up searches 

Indexing: 
•  Allow targeted search 

 
• Genome distributed in 

chapter / keywords 
 
 



Indexing speeds up searches 

1) Decide on a word length k, e.g., 
k=3 

2) Build hash table from search 
string, storing every word 
occurring in S together with its 
start position. 

3) Process query and search for each 
word occurring in Q1 whether it is 
in the hash table. 

4) Repeat for Q2.  

Kmer Position 
CAT 1,8 
ATG 2,9 
TGA 3,10 
GAG 4 
AGA 5 
GAC 6 
ACA 7 
GAA 11 

Kmer Position 

GAG 1 

AGA 2 

Q1.1 

Two lookups are sufficient to find Q1 in S 

Searchstring: CATGAGACATGAA 

Query1: GAGA 
Query2: CATG 
Query3: ATGT 

Q1.2 



Indexing handling mismatches? 

The 2nd lookup indicates that Q3 is almost in S 

2) How does the mapper deal with queries 
that ‘almost’ match the reference?  

Q3 matches the reference with one mismatch 

Relevant for sensitivity and 
specificity of the mapping. 
Allowing more mismatches 
increases sensitivity (consider 
sequencing error and genetic 
diversity) but decreases 
specificity (more false positives). 

O
ne m

ism
atch 

Kmer Position 
CAT 1,8 
ATG 2,9 
TGA 3,10 
GAG 4 
AGA 5 
GAC 6 
ACA 7 
GAA 11 

Kmer Position 

ATG 1 

TGT 2 

Q3.1 

O
ne m

ism
atch 



Main differences between mapping approaches 

Suffix tree Suffix array Seed hash tables 
Many variants, incl. spaced seeds 

$BANANA 
A$BANAN 
ANA$BAN 
ANANA$B 
BANANA$ 
NA$BANA 
NANA$BA 

Burrows Wheeler 
Transformation 

3) What kind of index does the mapper use? 

Relevant for speed and memory footprint of 
the mapper 



HASH-BASED MAPPING 



The “traditional way”: Hash tables 

• Used by MAQ, Eland, SOAP, SHRiMP, ZOOM, 
partially by Mosaik, SSAHA2, Stampy 

Mapping Reads on a Genomic Sequence: An 
Algorithmic Overview and a Practical Comparative 
Analysis (2012) Sophie Schbath 



Approach:  
1) Use a ‘hash-function’ to transform pattern P into a 

numerical hash value hP. 
 
 
 
 
 

The use of ‘hashing’ in exact pattern search 
(Rabin-Karp; O(n+m))  

*JUST AN EXAMPLE: v(A)=1, v(C)=2, v(G)=3, v(T)=4; mod=3 

‘AGC’  

Sum up the values* for each 
letter in P, divide by prime 
number mod and take the 

rest as hash value 
hAGC = (1+2+3)%3 

0 



Approach:  
1) Use a ‘hash-function’ to transform pattern P into a 

numerical hash value hP. 
 
 
 
 
 
 
 
 
 

2) Search the text T starting from left for words of length |P| 
having the same hash value as P.  

The use of ‘hashing’ in exact pattern search 
(Rabin-Karp; O(n+m))  

*JUST AN EXAMPLE: v(A)=1, v(C)=2, v(G)=3, v(T)=4; mod=3 

‘AGC’  

Sum up the values* for each 
letter in P, divide by prime 
number mod and take the 

rest as hash value 
hAGC = (1+2+3)%3 

0 

0 

1 

2 

2 

1 

2 1 0 1 
1 

0 
1 

2 1 
1 1 

0 
1 

2 

ACTTGAACAAGCTTGAGATCGAGAGGGGAGA 

1 

1 

2 

2 

2 

1 

1 

1 

2 

0 



Approach:  
1) Use a ‘hash-function’ to transform pattern P into a 

numerical hash value hP. 
 
 
 
 
 
 
 
 
 

2) Search the text T starting from left for words of length |P| 
having the same hash value as P.  

The use of ‘hashing’ in exact pattern search 
(Rabin-Karp; O(n+m))  

*JUST AN EXAMPLE: v(A)=1, v(C)=2, v(G)=3, v(T)=4; mod=3 

‘AGC’  

Sum up the values* for each 
letter in P, divide by prime 
number mod and take the 

rest as hash value 
hAGC = (1+2+3)%3 

0 

0 

1 

2 

2 

1 

2 1 0 1 
1 

0 
1 

2 1 
1 1 

0 
1 
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ACTTGAACAAGCTTGAGATCGAGAGGGGAGA 

1 

1 

2 

2 

2 

1 

1 

1 

2 

0 



Approach:  
1) Use a ‘hash-function’ to transform pattern P into a 

numerical hash value hP. 
 

2) Search the text T starting from left for words of length |P| 
having the same hash value as P.  
 

3) Given a word K with hk = hP was found, perform an exact 
string comparison to verify that K == P. (Note, the 
projection of words with length |P| in the space of hash 
values is not injective (linkseindeutig!). 
 

The use of ‘hashing’ in exact pattern search 
(Rabin-Karp; O(n+m))  

*JUST AN EXAMPLE: v(A)=1, v(C)=2, v(G)=3, v(T)=4; mod=3 



Idea: Speed up pattern search by creating look-up tables storing the hash values  
1) Search the text T starting from left for words of length k and compute their hash 

value hk 
 
 
 
 
 

2) Store the hash values together with the starting point of the corresponding words 
in a hash table. Note, a hash table is nothing but a special way of indexing your 
data, just like a phone book. This will provide direct access to your potential 
matches in the pattern search once you know the hash value of P. 

‘hashing’ in combination with hash tables help to 
reduce the average time complexity of the pattern 
search to O(1), i.e. constant in time* 
 

*note that this ignores the time and space you need to populate your hash table! 

ACTTGAACAAGCTTGAGATCGAGAGGGGAGA 

2 

2 1 

1 

1 

2 

2 

1 

2 1 0 1 
1 

1 
1 

2 1 
1 1 

1 
1 

2 1 

1 

2 

1 

1 
2 

0 

Hash value Position in string 

0 10,11,20,25,26 

1 1,2,6,7,8, 12,15,18,19,21,22,23,24,27,28 

2 3,4,5,9,13,14,16,17,29 



Seed and extend with local alignment 

 • SSAHA & Stampy: 
– Use k-mer (shorter than read) to find it in the 

genome 
– Seed regions will be extended by Needleman-

Wunsch 
 

• Drawback: 
– Many regions have to be analyzed in the extend 

phase 

 



Seed and Extend the pigeon hole principle 

• MAQ, SOAP, RMAP: 
– Chop read in k-mers (allowing errors) 
– All k-mers in the genome + correct order + adjacent to 

each other  read found 

Sophie Schbath et al. 2012 



Seed and Extend the q-gram filtering 

 
• SHRiMP2 & RazerS: 

– Chop read in k-mers but overlapping 
– If enough k-mers map in a small region a more careful 

alignment will be done 
 

• Drawback: 
– List to large to be kept in memory 
– Characters stored in 8 bits (2 bits per Nucleotide) but 

ambiguity code has to be overcome  



MAQ uses seed pairs as it allows, per default no more than 2 mismatches between 
seed and reference. As each 28 mere is represented by 4 non-overlapping seeds, we 
always have at least 2 seeds that must result in a perfect match to the reference. 

Reference 

AGACTGAGGTACGTAGACCATGATCGATACCCAAAAAGCTAGA 

GTACGTAGACGATGATCCATACCCAAAA 
Read (28 bp prefix) 

Why does MAQ* use pigeon hole principle and spaced 
seeds for mapping? 
Issues to solve by seed and extend: 
• Shorter seeds map more regions on the genome 
• Minimum of 10 nucleotides per k-mer 
• Allowing “Don’t care” positions to be able to find seeds  

spaced seed approach  
 



gatgtgacatacctgttctactgaggct 

GENOME 
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct 

hash value for template 1: 832589471 

Example: read1 - gatgtgacatacctgttctactgaggct 

MAQ*: pigeon hole principle for mapping 

*Li et al Genome Res. 2008. 18: 1851-1858  

Build six hash tables (templates) for the reads (only first 28 
bp are considered) only from the colored nucleotides 

HASH 2057673064 
gatgtgacatacctgttctactgaggct 3178370917 
gatgtgacatacctgttctactgaggct 773088662 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 

1856750201 
2510061809 
119777054 

compute hash values for spaced seeds in 
reference (on both strands and for one of 
the six templates) and perform lookups in 
hash tables of the reads 

6 ‘Templates’ 



GENOME 
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct 

1258119214 

gatgtgacatacctgttctactgaggct 

Example: read1 - gatgtgacatacctgttctactgaggct 

Build six hash tables for the reads (only first 28 bp) 
using only the colored nucleotides 

HASH 2057673064 
gatgtgacatacctgttctactgaggct 3178370917 
gatgtgacatacctgttctactgaggct 773088662 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 

1856750201 
2510061809 
119777054 

continue with next word in the reference 
from the same template…. 
until the entire reference sequence has 
been used. 

MAQ*: pigeon hole principle for mapping 

*Li et al Genome Res. 2008. 18: 1851-1858  



GENOME 
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcaggtgt
gtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtttcc
gggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttcaaa
acttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgacatctt
attttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagcctttatg
atgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaatagaa
cggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaagaaca
gttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataacgccc
ttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaacatc
gaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaaagat
tatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaagaaac
attaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactgaa
ggct 
 2057673064 

HIT: Calculate the 
sum of qualities of 
mismatched bases q 
over the whole 
length of the read 
and store together 
with hit position. 

For each read, MAQ 
stores score and 
position of only the 2 
best hits and the 
number of 0-, 1-, and 
2-mismatch seed 
positions 

MAQ *: pigeon hole principle for mapping 

gatgtgacatacctgttctactgaggct 

Example: read1 - gatgtgacatacctgttctactgaggct 

Build six hash tables for the reads (only first 28 bp) 
using only the colored nucleotides 

HASH 2057673064 
gatgtgacatacctgttctactgaggct 3178370917 
gatgtgacatacctgttctactgaggct 773088662 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 

1856750201 
2510061809 
119777054 

*Li et al Genome Res. 2008. 18: 1851-1858  

Presenter
Presentation Notes
MAQ scores hits on the sum of the read quality of mismatched bases. If mult hits, randomly selects one. Remembers position and score of two best scored hits and # of mismatch hits 0,1,2 in seed region. 

TRANS to BWT



gatgtgacatacctgttctactgaggct 

GENOME 
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct 

hash value for template 2 

Example: read1 - gatgtgacatacctgttctactgaggct 

MAQ* uses spaced seeds for mapping 

Li et al Genome Res. 2008. 18: 1851-1858  

Build six hash tables for the reads (only first 28 bp) 
using only the colored nucleotides 

HASH 2057673064 
gatgtgacatacctgttctactgaggct 3178370917 
gatgtgacatacctgttctactgaggct 773088662 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 

1856750201 
2510061809 
119777054 

compute hash values for spaced seeds in 
reference (on both strands) and perform 
lookup in hash tables of the reads 



gatgtgacatacctgttctactgaggct 

GENOME 
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct 

hash value 3 

Example: read1 - gatgtgacatacctgttctactgaggct 

MAQ* uses spaced seeds for mapping 

Li et al Genome Res. 2008. 18: 1851-1858  

Build six hash tables for the reads (only first 28 bp) 
using only the colored nucleotides 

HASH 2057673064 
gatgtgacatacctgttctactgaggct 3178370917 
gatgtgacatacctgttctactgaggct 773088662 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 

1856750201 
2510061809 
119777054 

compute hash values for spaced seeds in 
reference (on both strands) and perform 
lookup in hash tables of the reads 



gatgtgacatacctgttctactgaggct 

GENOME 
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct 

hash value 4 

Example: read1 - gatgtgacatacctgttctactgaggct 

MAQ* uses spaced seeds for mapping 

Li et al Genome Res. 2008. 18: 1851-1858  

Build six hash tables for the reads (only first 28 bp) 
using only the colored nucleotides 

HASH 2057673064 
gatgtgacatacctgttctactgaggct 3178370917 
gatgtgacatacctgttctactgaggct 773088662 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 

1856750201 
2510061809 
119777054 

compute hash values for spaced seeds in 
reference (on both strands) and perform 
lookup in hash tables of the reads 



gatgtgacatacctgttctactgaggct 

GENOME 
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct 

hash value 5 

Example: read1 - gatgtgacatacctgttctactgaggct 

MAQ* uses spaced seeds for mapping 

Li et al Genome Res. 2008. 18: 1851-1858  

Build six hash tables for the reads (only first 28 bp) 
using only the colored nucleotides 

HASH 2057673064 
gatgtgacatacctgttctactgaggct 3178370917 
gatgtgacatacctgttctactgaggct 773088662 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 

1856750201 
2510061809 
119777054 

compute hash values for spaced seeds in 
reference (on both strands) and perform 
lookup in hash tables of the reads 



gatgtgacatacctgttctactgaggct 

GENOME 
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtgaaacattgtcagg
tgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaacaacggaaactccaattcctaagtt
tccgggacacactattcatatagatataatttctacagacaaaaacgggtacttacggcaattcacaaattttc
aaaacttgcgaaagcaaaaataaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgac
atcttattttattttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaacaacagccttt
atgatgaaagaccagctgggcatacaaattttcaaagcatccccttataaaagttctgtaaacggacaaata
gaacggtttcattctatcctcgctgaaattaaaagatgtttaaaaactaaacaggtacaccgaacatttgaaga
acagttcaattcagctgtctaggaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataac
gcccttaaaaatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataaggcaa
catcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaagcaataagatcaa
agattatgagccaggacaaacagtttttataaagcaaatcacaaggccaggttctaagctgtacaagaaag
aaacattaaaagaaaacagacaaacatttgttatcacagaagcaggaagatgtgacatacctgttctactg
aaggct 

hash value 6 

Example: read1 - gatgtgacatacctgttctactgaggct 

MAQ* uses spaced seeds for mapping 

Li et al Genome Res. 2008. 18: 1851-1858  

Build six hash tables for the reads (only first 28 bp) 
using only the colored nucleotides 

HASH 2057673064 
gatgtgacatacctgttctactgaggct 3178370917 
gatgtgacatacctgttctactgaggct 773088662 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 
gatgtgacatacctgttctactgaggct 

1856750201 
2510061809 
119777054 

compute hash values for spaced seeds in 
reference (on both strands) and perform 
lookup in hash tables of the reads 



1. At the alignment stage, MAQ first searches for the ungapped match with 
lowest mismatch score, defined as the sum of qualities at mismatching 
bases.  

2. MAQ only considers positions that have two or fewer mismatches in the 
first 28 bp (default parameters; speed-up).  

3. Sequences that fail to reach a mismatch score threshold but whose mate 
pair is mapped are searched with a gapped alignment algorithm in the 
regions defined by the mate pair.  

4. To evaluate the reliability of alignments, MAQ assigns each individual 
alignment a phred-scaled quality score (capped at 99), which measures 
the probability that the true alignment is not the one found by MAQ.  

5. MAQ always reports a single alignment, and if a read can be aligned 
equally well to multiple positions, MAQ will randomly pick one position 
and give it a mapping quality zero. Because their mapping score is set to 
zero, reads that are mapped equally well to multiple positions will not 
contribute to variant calling.  

MAQ: An overview 



NextGenMap 

• Hash-based read mapper bridging: 
1. speed  
2. ability to map reads in highly polymorphic regions 
 

• pitfalls: 
1. Mixing single end and paired end reads is not 

supported  corrupt the mapping results 
2. Not recommended to change parameters –kmer and 

kmer-skip 
3. Values between 0.5 and 0.8 give the best trade-off 

between speed and sensitivity 
 



Algorithm Workflow 

1. Indexing the reference genome (only once) 
 

2. Identification of possible mapping regions on the 
reference genome (candidate mapping region 
(CMR) search) 
 

3. Computation of alignment scores for all CMRs 
found in step 2 
 

4. Computation of the full alignment for the best 
scoring CMR from step 3 



Indexing the reference genome 

• k-mer = 13 bp 
 

• Every 3. position 
 

• Only A, C, G, T 
 

• Only + strand 



Indexing the reference genome 

• GP = genomic positions 
– Consecutively  k-mer blocks 
– Saving start position 

 
• HT = Hash table of k-mers 

– Lexicographic ordered 
– Frequency (numbered 

serially) 
 

 



Indexing the reference genome 

• K-mer >1,000 times excluded 
 

• tHT count frequencies of k-mers in genome 



Identification of CMR 

• R = read of length 
9bp 
 

• G = reference 
Genome 
 

• Step-size = 2 
 

• k-mer size = 3bp 



Identification of CMR 

• Position 1 not found due to step-size =2 
• Saving startpoints in reference genome 
• Shift of readstart to startposition  
• Allow modulo 8 (bit-shift operation) due to polymorphic 

regions to reduce start positions 
 



Computation of CMRs 

uninformative 

informative 



Computation of CMRs 

= 𝝈𝝈 

• Calculating the ratio of 

 Average read seed count 

 Perfectly matching read 

• σ = 1  perfect reads 

• σ = 0  very different reads 

• Calculating genomic start points 

 FR   Frequency distribution 

 Genomic position with seed 

word count above ϴR 

 

Presenter
Presentation Notes
Auf Fehler der Slide hinweisen.
we compute for a random sample of B reads maxfFRg for each read R and the
average
Fmax =
1
B
XB
j=1
maxfFRj g; (2)
where B = 10; 000.



Computation of alignment scores 

1. Calculating the read alignment score 
 

2. c defines consecutive insertions deletions 

dependent on the read length (l) 

 

3. MASon (Rescheneder et al. 2012) for 

alignment 



BURROWS-WHEELER TRANSFORM 
BASED ALGORITHMS 



Suffix Trees / Suffix Tries 

• Advantage: 
– Hashing performs poor for repeating regions 
 
 
 

• Each suffix of a word is represented as path from 
leave to root 
– Size of tree proportional to size of genome 
– Building time proportional to size of genome 
– Search time O(Lr) 

 
 



Suffix Trees 

 
 
 
 
 
 
 
 
 
 

• Advantage: 
– Hashing performs poor for repeating regions 
– Repeating regions are squeezed into one path 

 

Mapping Reads on a Genomic Sequence: An 
Algorithmic Overview and a Practical Comparative 
Analysis (2012) Sophie Schbath 



Suffix Arrays 

• Problem of the trees and tries: 
– Large genomes will not fit in the RAM 

 
• Array is the set of suffixes sorted lexicographically 

– Trick 1: save the startposition of the suffix 
 

Mapping Reads on a Genomic Sequence: An Algorithmic Overview and a Practical Comparative Analysis 
(2012) Sophie Schbath 



Trick 2: The Burrows-Wheeler Transform 

• Invented by David Wheeler in 1983 (bell labs), pub. 
1994 
 

• Used in data compression (bzip2) 
 

• Used in 2003 on the human genome to define exact 
word matches (originally for microarray probe 
design) 
 

• First used for short read alignment by bowtie, now 
adopted by bwa (maq author) and SOAP2 
 



BWT(S) 

S a c a a c g 

The Burrows-Wheeler Transform 

a c a a c g $ 
c a a c g $ a 
a a c g $ a c 
a c g $ a c a 
c g $ a c a a 
g $ a c a a c 
$ a c a a c g 

$ 

sort 
lexicographically 

$ a c a a c g 
a a c g $ a c 
a c a a c g $ 
a c g $ a c a 
c a a c g $ a 
c g $ a c a a 
g $ a c a a c 



Burrows Wheeler Transform (BWT) 

Generate matrix by 
1. Appending a $ to the end of the string S 

that should be indexed. $ should have 2 
properties 
1. it must not occur in the string 
2. it should be lexicographically 

smaller than any character in S 
2. generate all cyclic permutations of S 
3. sort the resulting matrix 

lexicographically (the line beginning 
with the $ is the first to occur in the 
matrix.  

BWT(S) 
1st 

1st 

The matrix has the property of last first (LF) mapping: The ith 
occurrence of character X in the last column corresponds to the same 
text character as the ith occurrence of X in the first column 



Burrows Wheeler Transform (BWT) 

The matrix has the property of 
last first (LF) mapping: This can 
be used to reconstruct the 
original text from BWT(S) using 
the UNPERMUTE algorithm. 
 

BWT(S) 
1st 

1st 



Burrows Wheeler Transform (BWT) 

BWT(S) 
1st 

1st 

The matrix has the property of last first (LF) mapping: This can be used to 
search for a text within BWT(S) using the EXACTMATCH algorithm. 
Key aspects: 
1) Matrix is sorted lexicographically. Thus, rows beginning with a given 

sequence appear consecutively. 
2)  EXACTMATCH algorithm calculates the range of matrix rows beginning 

with successively longer suffixes of the query. 
3) At each step, the size of the range either shrinks or remains the same.  
4) When the algorithm completes, rows beginning with S0 (the entire query) 

correspond to exact occurrences of the query in the text.   
 

 
 



c t g a a a c t g g t $ 
t g a a a c t g g t $ c 
g a a a c t g g t $ c t 
a a a c t g g t $ c t g 
a a c t g g t $ c t g a 
a c t g g t $ c t g a a 
c t g g t $ c t g a a a 
t g g t $ c t g a a a c 
g g t $ c t g a a a c t 
g t $ c t g a a a c t g 
t $ c t g a a a c t g g 
$ c t g a a a c t g g t 

Original string: ctgaaactggt 
Put a $ on the end     
create cyclic rotations of the string... 

Presenter
Presentation Notes
Now I’ll show the basic concept of the burroughs-wheeler transformation. It’s reversible, and gives an easier to compress string, and people have developed some fast algorithms to search it. 

In the case of bowtie, the entire genome is the string that undergoes transformation.



$ c t g a a a c t g g t 
a a a c t g g t $ c t g 
a a c t g g t $ c t g a 
a c t g g t $ c t g a a 
c t g a a a c t g g t $ 
c t g g t $ c t g a a a 
g a a a c t g g t $ c t 
g g t $ c t g a a a c t 
g t $ c t g a a a c t g 
t $ c t g a a a c t g g 
t g a a a c t g g t $ c 
t g g t $ c t g a a a c 

Alphabetically sort the permuted strings, first column is the 
“genome dictionary” last column is the Burrows-wheeler 
transformation 
 

11 
3 
4 
5 
0 
6 
2 
8 
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10 
1 
7 



$ c t g a a a c t g g t 
a a a c t g g t $ c t g 
a a c t g g t $ c t g a 
a c t g g t $ c t g a a 
c t g a a a c t g g t $ 
c t g g t $ c t g a a a 
g a a a c t g g t $ c t 
g g t $ c t g a a a c t 
g t $ c t g a a a c t g 
t $ c t g a a a c t g g 
t g a a a c t g g t $ c 
t g g t $ c t g a a a c 

Look up ctgg: start at the end with g, lookup in genome 
dictionary 
top(g) = 6; bot(g) = 8 
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$ c t g a a a c t g g t 
a a a c t g g t $ c t g 
a a c t g g t $ c t g a 
a c t g g t $ c t g a a 
c t g a a a c t g g t $ 
c t g g t $ c t g a a a 
g a a a c t g g t $ c t 
g g t $ c t g a a a c t 
g t $ c t g a a a c t g 
t $ c t g a a a c t g g 
t g a a a c t g g t $ c 
t g g t $ c t g a a a c 

Does gg exist, and what are top(gg) and bot(gg)?  
Yes, gg exists.  
top(gg)   =   top(g) + #g before g-block in bwt  =   6 + 1        = 7 
bot(gg)   =   top(gg) + # of gg in genome – 1     =   7 + 1 – 1 = 7 
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10 

11 



$ c t g a a a c t g g t 
a a a c t g g t $ c t g 
a a c t g g t $ c t g a 
a c t g g t $ c t g a a 
c t g a a a c t g g t $ 
c t g g t $ c t g a a a 
g a a a c t g g t $ c t 
g g t $ c t g a a a c t 
g t $ c t g a a a c t g 
t $ c t g a a a c t g g 
t g a a a c t g g t $ c 
t g g t $ c t g a a a c 

Does tgg exist, and what are top(tgg) and bot(tgg)?  
Yes, tgg exists.  
top(tgg) =  top(t) + #t before gg-block in bwt =  9 + 2          = 11 
bot(tgg) =  top(tgg) + # of tgg in genome – 1  = 11 + 1 – 1  = 11 
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$ c t g a a a c t g g t 
a a a c t g g t $ c t g 
a a c t g g t $ c t g a 
a c t g g t $ c t g a a 
c t g a a a c t g g t $ 
c t g g t $ c t g a a a 
g a a a c t g g t $ c t 
g g t $ c t g a a a c t 
g t $ c t g a a a c t g 
t $ c t g a a a c t g g 
t g a a a c t g g t $ c 
t g g t $ c t g a a a c 

Does ctgg exist, and what are top(ctgg) and bot(ctgg)?  
Yes, ctgg exists.  
top(ctgg) = top(c) + #c before tgg-block in bwt  = 4 + 1         = 5 
bot(ctgg) = top(ctgg) + # of ctgg in genome – 1 = 5 + 1 – 1   = 5 
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$ c t g a a a c t g g t 
a a a c t g g t $ c t g 
a a c t g g t $ c t g a 
a c t g g t $ c t g a a 
c t g a a a c t g g t $ 
c t g g t $ c t g a a a 
g a a a c t g g t $ c t 
g g t $ c t g a a a c t 
g t $ c t g a a a c t g 
t $ c t g a a a c t g g 
t g a a a c t g g t $ c 
t g g t $ c t g a a a c 
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Found ctgg at position 5, which is position 6 in 
original string ctgaaactggt 
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Coping with mismatches: Query GGTA 

Ranges of the matrix 
rows beginning with 
the suffix observed to 
that point. 

Empty range:  
Abort or backtrack. 
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Quality-aware, greedy, randomized, depth-first search 
through the space of possible alignments.  

1. The search proceeds similarly to 
EXACTMATCH 

2. If range becomes empty (suffix does not 
occur in text), the algorithm backtracks 
and selects an already-matched query 
position and substitutes a different base 
there. The EXACTMATCH algorithm 
resumes from this modified position. 

3. The algorithm allows only substitutions 
that yield a modified suffix that occurs at 
least once in the text. If there are multiple 
candidate substitution positions, then the 
algorithm greedily selects a position with 
a minimal quality value.  

4. Because search is greedy, the first valid 
alignment is not necessarily the best 
(Number of mismatches and quality). 
Bowtie has parameters to cope with this 
(--best or –all (all alignments). 

5. Excessive Backtracking should be avoided. 
Note, we start from the low quality end... 
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Coping with mismatches 

• Our alignment policy allows a limited number of mismatches and prefers 
alignments where the sum of the quality values at all mismatched 
positions is low.  
 

• The search proceeds similarly to EXACTMATCH, calculating matrix ranges 
for successively longer query suffixes. 

 
• If the range becomes empty (a suffix does not occur in the text), then the 

algorithm may select an already-matched query position and substitute a 
different base there. The EXACTMATCH algorithm resumes from this 
position. 
 

• The algorithm selects only those substitutions that yield a modified suffix 
that occurs at least once in the text. If there are multiple candidate 
substitution positions, then the algorithm greedily selects a position with 
a minimal quality value.  

  
 



Bowtie: Avoidance of excessive backtracking  
(assuming 1 mismatch) 

Problem: The aligner spends most of its effort fruitlessly backtracking to positions 
close to the 3' end of the query (error prone).  
 
Solution Part1: double indexing (similar to MAQ), using two indices for the genome 
• Index 1: BWT of the original genome 
• Index 2: BWT of the genome with reversed character order (not reverse 

complemented!) 
Solution Part2: The aligner is invoked twice 
• First round: Index 1 is used, and the aligner is started with original read with the 

constraint that it must not  substitute a position in the query’s right half (3’ end). 
• Second round: Index 2 is used, and the aligner is started with the reversed read, 

again with the constraint that it must not substitute a position in the reversed 
query’s right half (originally and still the 5’ end). 

Solution Part3: set a hard upper limit of backtracks to be performed. 
 

5’ 3’ 
5’ 3’ 

Reference 

exact substitute 

3’ 5’ 
Reference 

3’ 5’ exact substitute 



The three phases of Bowtie 

In the case of 2 (or more mismatches): 
• Bowtie uses the first 28 bp as seed 
• The seed is split into a high quality 5’ 

half (hi-half) and a low quality 3’ half 
(lo-half) 

• For up to 2 mismatches we have four 
scenarios: 

1. no mismatches in seed 
2. 1-2 mismatches only in the lo-half 
3. 1-2 mismatches only in the hi-half 
4. 1 mismatch each in hi- and low-

half 
• Any number of mismatches can occur 

in non-seed part (subject to other 
thresholds). 

fu
ll 

re
ad

 



Changes in Bowtie2 

Supports gapped, local, and paired-end alignment modes: 
• For reads longer than about 50 bp Bowtie 2 is generally 

faster, more sensitive, and uses less memory. 
 

• Bowtie 2 supports local alignment, which doesn’t require 
reads to align end-to-end. Local alignments might be 
“trimmed” (“soft clipped”) at one or both extremes in a 
way that optimizes alignment score.  
 

• There is no upper limit on read length in Bowtie 2. 
 

• Bowtie 2 allows alignments to overlap ambiguous 
characters (e.g. Ns) in the reference.  

http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#end-to-end-alignment-versus-local-alignment
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#ambiguous-characters
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#ambiguous-characters


Bowtie2: Seed extraction & alignment 

Seed extraction: 
• Substrings of the read (“seed strings”) are extracted at 

regular intervals along the read and its reverse 
complement.  

• Seed strings are contiguous (i.e. they are not spaced 
seeds) and may or may not overlap each other. 

FM Index assisted seed alignment : 
• Find ungapped alignments for each based on Bowtie1 
• Seed strings can be aligned with up to 1 mismatch.  



Bowtie2: Seed alignment priorization & alignment 

Priorization: 
• “seed‐hit range”  A seed‐hit range describes a range 

of rows in the Burrows‐Wheeler matrix that begin with a 
reference substring that is within 0 or 1 mismatches of 
the seed substring.  

• Bowtie 2 proceeds by repeatedly selecting a row in a 
random weighted fashion using these weights.  

Alignment: 
• Bowtie 2 extracts flanking characters from the reference 
• Solves a rectangular dynamic programming problem to 

find high‐scoring full alignments in the vicinity of the 
seed hit.  



• Up to 2 mismatches in first 28 bases reported by Maq 
(default) and 1-2 mismatches by Bowtie1/2 in the seed. 

 
• If >=1 matching seed regions exist for one read Bowtie2 

has a dynamic programming effort limit of 15. After 15 
attempts not performing better than the best so far.  
 

• Bowtie outperforms Bowtie2 in case of short reads (<=50 
nt) in some cases.  
 

• Bowtie convert N to A, C, G or T randomly / Bowtie2 
accepts N’s 

Watch out for the following… 
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