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Modern genome sequencing samples the genome in small, 
error-prone fragments called reads. At the read level, the 
higher error of single-molecule observations is mitigated 

by consensus observations. In Illumina data, the consensus is spa-
tial through clusters of amplified molecules1. Pacific Biosciences 
(PacBio) uses repeated sequencing of a circular molecule to build 
consensus across time2. The accuracy of these approaches, and the 
manner in which they fail, ultimately limits the read lengths of these 
methods and the analyzable regions of the genome3,4.

Recent improvements in PacBio throughput have enabled highly 
accurate (99.8%) long reads (>10 kilobases (kb)), called HiFi reads5, 
to set new standards in variant-calling accuracy6 and the first 
telomere-to-telomere human assembly7. The remaining sequencing 
errors are strongly concentrated in homopolymers3,8, and the need 
to manage these errors constrains the minimum number of passes 
required for acceptable accuracy and therefore the yield and quality 
of PacBio sequencing.

The existing algorithm for consensus generation from HiFi 
sequencing data uses a hidden Markov model to create a draft 
consensus sequence, which is iteratively polished9. The underlying 
process of removing errors using an alignment of reads is also used 
in genome assembly10 and in assembly polishing methods such as 
Racon11, Pilon12 and PEPPER-Margin-DeepVariant13. All of these 
methods correct from a given alignment to a reference or contig. 
These methods use statistical heuristics for the correction model 
itself except for PEPPER-Margin-DeepVariant.

To improve consensus generation of HiFi sequencing data, we 
introduce a deep learning-based approach using a transformer14 
architecture. Transformers have gained rapid adoption in natural 
language processing15 and computer vision16. In biology, transform-
ers have been applied to multiple sequence alignment (MSA) of pro-
tein sequences17 and dramatically improved AlphaFold2’s protein 
structure prediction18. We present DeepConsensus, an encoder-only 

transformer model that uses an MSA of the PacBio subread bases 
and a draft consensus from the current production method (pbccs). 
DeepConsensus incorporates auxiliary base-calling features to pre-
dict the full sequence in a window (by default 100 base pairs (bp)). 
Because insertion and deletion (INDEL) errors are the dominant class 
of error in these data, we train the model with an alignment-based 
loss function inspired by differentiable dynamic programming19. 
This gap-aware transformer–encoder (GATE) approach more accu-
rately represents misalignment errors in the training process.

DeepConsensus reduces errors in PacBio HiFi reads by 41.9% 
compared to pbccs in human sequence data. We stratify performance 
across mismatches, homopolymer INDELs and non-homopolymer 
INDELs, and DeepConsensus improves accuracy in each category. 
DeepConsensus increases the yield of reads at 99% accuracy by 8.7%, 
at 99.9% accuracy by 26.7% and at 99.99% accuracy by 90.9%. We 
demonstrate that using reads from DeepConsensus improves the con-
tiguity, completeness and correctness of genome assembly compared 
to assemblies generated using pbccs reads. Similarly, we demonstrate 
improved accuracy of variant calling when using DeepConsensus 
reads. Finally, we demonstrate that improvements in accuracy allow 
for longer PacBio read lengths while retaining acceptable read accu-
racy, enabling improvements in contiguity of genome assembly and 
increasing the experimental design options for PacBio sequencing.

Results
Overview of DeepConsensus. An overview of the DeepConsensus 
algorithm is shown in Fig. 1. PacBio circular consensus sequenc-
ing (CCS) produces a set of subreads that is processed by pbccs to 
produce a consensus (CCS) read. Subreads are aligned to the CCS 
read. The alignment is then divided into 100-bp partitions based 
on the MSA length. Each partition is then transformed into a ten-
sor to be used as input to the DeepConsensus model for training  
or inference.
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The tensor contains additional information beyond the 
sequence extracted from each subread. This includes the pulse 
width (PW) and interpulse duration (IPD). These are raw values 
provided by the basecaller that are used to call bases. Additionally, 
DeepConsensus incorporates the signal-to-noise (SN) ratio for 
each nucleotide and strand information. For training, we use a 
custom loss function that considers the alignment between the 
label and predicted sequence. For inference, the outputs for each 
100-bp partition in the full sequence are stitched together to pro-
duce the polished read.

To assess the contributions of the various input features and the 
alignment loss strategy, we conducted an additional set of training 
experiments with some or all of the features. Training with all input 
features and alignment loss showed 37.57% error reduction over 
pbccs on our test dataset containing HG002 chromosome 19 (chr19) 
and chr20. Training with the same feature set and cross-entropy loss 
resulted in a 9.31% error reduction. Training with only sequence 
information and no pulse metadata showed a 21.0% error reduc-
tion. We see additional error reduction from each input feature 
(Supplementary Table 1).

DeepConsensus increases HiFi accuracy and yield. We first eval-
uated the performance of DeepConsensus (v0.1) by aligning pol-
ished, 11-kb chr20 reads from HG002 against a high-quality diploid 
assembly20. HiFi reads output from pbccs were processed similarly, 
and both sets were filtered at their predicted Q20 (Qpredicted > 20). We 
then used a custom script to calculate an empirical Phred-scaled 
read accuracy score for each read (Qconcordance; Methods). When 
examining the intersection of reads to assess relative improvement, 
we observed that accuracy improvements are distributed across 
the full range of pbccs Qconcordance scores (Fig. 2a). We observed an 
average Qconcordance of 28.94 for DeepConsensus and 26.6 for pbccs, 
which corresponds to an average read quality improvement of 2.34 
Qconcordance points. We also examined read accuracy by the number 
of subreads used to generate each HiFi read and observed Qconcordance 
improvements for all subread bins (Fig. 2b).

Sequencing errors can be classified by type (mismatch and 
INDEL) and according to their sequence context (homopolymer 
and non-homopolymer). Homopolymer INDELs have previ-
ously been characterized as the largest contributors to PacBio HiFi 
error rates5. We used bamConcordance5 to examine the improve-
ments for each error class. Notably, DeepConsensus reduces errors 
across all error classes, including substantial reductions in homo-
polymer INDELs and a 70.50% reduction in non-homopolymer  
insertions (Table 1).

We next asked how improvements in read accuracy contribute to 
increases in sequencing yield. DeepConsensus and pbccs are both 
configured to output reads with a predicted Q > 20. We compared 
the total yield and yields at Q thresholds of 20, 30, 40 and perfect 
match and observed that DeepConsensus increases sequencing 
yield across all quality bins (Table 2).

In addition to producing a polished sequence, our model also 
outputs predicted base qualities. The average base quality Qpredicted 
should match the Qconcordance. We filtered reads with identity = 1 and 
found that the mean(Qpredicted − Qconcordance) = 2.77. A comparison 
of pbccs and DeepConsensus is available in Supplementary Fig. 1.

Recently, Lal et al. applied a recurrent neural network to polish 
PacBio HiFi reads21 and used a similar approach to PEPPER and 
other variant-calling techniques. We downloaded their polished 
reads and compared the data against the same reads polished by 
DeepConsensus. DeepConsensus achieves a Qconcordance of 29.93 ver-
sus 29.18 reported in Lal et al.21 (Supplementary Table 2) on this 
dataset, corresponding to a reduction in average base pair errors 
per 10 kb from 16.53 to 10.09 with DeepConsensus versus 12.08-bp 
errors per 10 kb for their approach (Supplementary Table 3).

Using DeepConsensus reads improves de novo assembly. To 
evaluate the improvements achieved in de novo assembly with 
the increased yield (Supplementary Figs. 2–5 and Supplementary 
Table 4) and higher-quality reads from DeepConsensus, we gener-
ated phased assemblies of four human genome samples using the 
hifiasm22 assembler. We generated assemblies with reads from two 
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Fig. 1 | Overview of DeepConsensus. Illustration of the DeepConsensus workflow. Subreads are aligned to a CCS read divided into 100-bp partitions. 
Each partition is converted to a tensor object containing the PW, IPD, SN ratios and strand information. These tensors can then be used during training or 
inference using an encoder-only transformer. The trained model produces a polished segment that is stitched together to produce a polished read.
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single-molecule real-time (SMRT) Cells (HG003, HG004, HG006 
and HG007) and three SMRT Cells (HG003, HG004 and HG006). 
To assess the contiguity, we derived the contig N50 (the shortest 
contig in the assembly for which that contig and all longer contigs 
compose 50% of the assembly length), NG50 (the shortest con-
tig in the assembly for which that contig and all longer contigs 
compose 50% of the true genome length) and genome coverage 
against GRCh38 using QUAST23. In Fig. 3, we show the improve-
ments in assembly quality and contiguity as a result of increased 
yield and quality of reads from DeepConsensus. With reads from 
two SMRT Cells, we see that the NG50 of the assemblies with 
DeepConsensus reads (17.23 megabases (Mb), 12.37 Mb, 31.54 Mb 
and 8.48 Mb) are, on average, threefold higher than assembly NG50 
with pbccs reads (4.91 Mb, 3.72 Mb, 18.55 Mb and 1.94Mb; Fig. 3a 
and Supplementary Table 5).

We evaluated the correctness of the assembly using YAK22, which 
overlaps the assembly with k-mers observed in short-read sequencing. 
The YAK-estimated quality of the assemblies with DeepConsensus 
reads achieves Q44, on average, compared to Q42 with assemblies 
using pbccs reads (Fig. 3b and Supplementary Table 6). We also used 
dipcall24 to derive the small variants from the assembly and compared 
the small variants against Genome-In-a-Bottle (GIAB) truth sets25 of 
the associated sample. We observed that the assemblies derived from 
DeepConsensus reads have, on average, 43% fewer total errors (false 
positives and false negatives) than the assemblies derived from pbccs 
reads (Supplementary Tables 7 and 8).

To evaluate the gene completeness of the assemblies, we used 
asmgene26 with the Ensembl Homo sapiens cDNA sequences as 
input and GRCh38 as the reference sequence. We observed that the 
assemblies generated with pbccs have a twofold higher false dupli-
cation rate (average of 540 false duplications) than the assemblies 

generated with DeepConsensus (average of 231 false duplications; 
Supplementary Tables 9 and 10).

Similarly, in assemblies generated with three SMRT Cells, 
we observed that the contig NG50 values of the assemblies with 
DeepConsensus reads (55 Mb, 41 Mb and 51 Mb) are, on aver-
age, 1.3-fold higher than the contig NG50 values of the assem-
blies with pbccs reads (33 Mb, 36 Mb and 41 Mb; Fig. 3c and 
Supplementary Table 5). The average assembly quality was Q49.4 
with DeepConsensus reads compared to Q48.1 for assemblies 
with pbccs reads (Fig. 3d and Supplementary Table 6). The 
assembly-based small-variant evaluation showed that assem-
blies from DeepConsensus reads have 33% fewer total errors 
than assemblies with pbccs reads (Supplementary Tables 7 and 8).  
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Fig. 2 | DeepConsensus improves the accuracy of CCS reads. a, Comparison of observed read accuracy (Qconcrdance) for the intersection of pbccs and 
DeepConsensus (HG002 chr20 11-kb) reads. Each light green dot corresponds to a single read. Dark green dots on the margins represent reads that were 
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Table 1 | Corrections by error type

Metric pbccs 
errors (per 
10 kb)

DeepConsensus 
errors (per 10 kb)

Percent 
decrease

Mismatch 1.62 0.88 45.70%

Homopolymer deletion 8.37 5.99 28.40%

Homopolymer insertion 9.14 4.46 51.20%

Non-homopolymer deletion 0.93 0.86 7.50%

Non-homopolymer insertion 1.83 0.54 70.50%

All errors 21.89 12.73 41.80%

The average numbers of errors per 10 kb for each error class are listed for pbccs and 
DeepConsensus. The percent decrease reflects the reduction in errors in DeepConsensus 
compared to pbccs.
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The gene completeness analysis showed that the assemblies gener-
ated with pbccs (average of 162 false duplications) have a higher 
number of false duplications than the assemblies generated with 
DeepConsensus (average of 134 false duplications; Supplementary 
Tables 9 and 10).

To investigate the ability of DeepConsensus to generalize to 
non-human species, we generated de novo assemblies of Zea mays 
(Maize B73) using hifiasm with reads from two SMRT Cells to eval-
uate the performance of DeepConsensus on a non-human sample. 
Similar to the human samples, we observed that the NG50 of the 
Maize assembly improves from 45.5 Mb to 57.6 Mb by using reads 
from DeepConsensus (Supplementary Fig. 6 and Supplementary 
Table 11). The gene completeness analysis with asmgene suggested 
that the assembly with DeepConsensus has the same gene complete-
ness (99.71%) as the assembly with pbccs reads (Supplementary 
Table 12). We further applied DeepConsensus to two additional 
non-human species and observed improvements to assembly con-
tiguity for Mus musculus (Supplementary Fig. 7) and Rana muscosa 
(Supplementary Fig. 8). The well-annotated M. musculus reference 
genome allowed us to quantify that use of DeepConsensus reads in 
assembly improved NG50 from 22.4 Mb to 41.3 Mb (Supplementary 
Table 11), improved gene completeness from 99.44% to 99.53% 
(Supplementary Table 12) and improved complete multicopy genes 
from 84.33% to 85.03% (Supplementary Table 13).

To quantify assembly improvements that result from increased 
sequence depth or through increased read accuracy, we conducted 
additional assemblies from the same set of reads from pbccs and 
DeepConsensus. In one set, we used any read that reached the Q20 
filter in DeepConsensus, while in the other set, we used any read 
that reached the Q20 filter in pbccs. These results showed that either 
increased sequence depth or increased read accuracy improved 
assembly properties independent of the other and that the combi-
nation of increased depth and accuracy resulted in the best results 
(Supplementary Fig. 9 and Supplementary Tables 14–19).

In summary, we observe consistent improvements in contiguity, 
correctness and completeness in assemblies generated with reads 
from DeepConsensus using either two or three SMRT Cells across 
human and multiple non-human species.

Using DeepConsensus reads improves variant-calling accuracy. 
To assess small-variant-calling improvements with DeepConsensus 
reads, we mapped pbccs and DeepConsensus reads to the 
GRCh38 reference with pbmm2 (ref. 26) and called variants with 
DeepVariant27 for four human genome samples. We used the 
DeepVariant v1.2 PacBio HiFi model for variant calling with pbccs 
reads, and we trained a custom DeepVariant model to call variants 
with DeepConsensus reads from chr1 to chr19, with HG002 GIAB 
v4.2.1 as the small-variant benchmark set.

For the variant-calling analysis, we used HG003, HG004, HG006 
and HG007 samples. For all samples, we used the GIAB v4.2.1 
benchmark set to evaluate the variants. We used hap.py28 to assess 
the variants against the GIAB benchmark set. For each sample, we 
report the number of false-positive and false-negative variants in 
single nucleotide polymorphism (SNP) and INDEL categories.

In Fig. 4, we show the variant-calling performance of DeepVariant 
with DeepConsensus and pbccs reads for two and three SMRT Cells. 
Variant calling with DeepConsensus reads from two SMRT Cells 
had, on average, 25% fewer errors for HG003 and HG004 and 30% 
fewer errors for HG006 and HG007 samples than variants with pbccs 
reads (Fig. 4a,c,e and Supplementary Fig. 10). Similarly, variants 
derived from DeepConsensus reads from three SMRT Cells had, on 
average, 8% fewer total errors for HG003 and HG004 and 28% fewer 
errors for HG006 than variants with pbccs reads. Furthermore, 
we observed that SNP errors, on average, decreased 35% for two 
and 8% for three SMRT Cells of HG003 and HG004 samples  
(Fig. 4b,d,f). Similarly, INDEL errors, on average, decreased 15% for 

two and 6% for three SMRT Cells in variants with DeepConsensus 
reads for HG003 and HG004 samples (Supplementary Table 20). In 
summary, DeepConsensus improves variant-calling performance 
across samples in both SNP and INDEL categories with reads from 
two and three SMRT Cells.

To assess the performance of DeepConsensus in various genomic 
contexts, we used the GIAB stratification files on assembly-based 
variant calling of HG006 (a sample unrelated to the training sam-
ple of HG002). This showed relatively consistent error reductions 
across dinucleotide repeats, homopolymers and high- and low-GC 
content regions (Supplementary Table 21). Assessments in centro-
meric and telomeric regions are difficult due to a lack of reliable 
assembly and GIAB truth sets. We quantified read yield at predicted 
Q20 or above and found a 30.3% increase in DeepConsensus yield 
relative to pbccs in the genomic contexts considered.

Use of longer reads improves yield, assembly and variant-calling 
accuracy. With higher consensus accuracy for HiFi reads, the num-
ber of passes can be reduced while maintaining accuracy (Fig. 2b), 
potentially allowing for sequencing of longer insert sizes while 
preserving the quality of downstream analyses. To test this, we 
sequenced a HG002 sample with 15-kb and 24-kb insert sizes, each 
with two SMRT Cells on the Sequel II System using Chemistry 2.2. 
We generated DeepConsensus reads for the 15-kb and 24-kb insert 
size (Supplementary Fig. 11a and Supplementary Table 22). Details 
on the library preparation protocol for 24-kb reads are provided in 
the Methods.

We show the improvements in genome assembly and variant calling 
we achieved with 24-kb reads compared to 15-kb reads of the HG002 
sample (Supplementary Fig. 11). The hifiasm assembly with 24-kb 
reads achieved a higher contig NG50 of 34.05 Mb than the hifiasm 
assembly with 15-kb reads, with an NG50 of 24.81 Mb, although the 
assembly quality is higher with 15-kb (Q51.7) reads than with 24-kb 
reads (Q50.8; Supplementary Tables 23 and 24). The assembly-based 
variant-calling evaluation showed that the assembly with 24-kb reads 
has higher INDEL accuracy and comparable SNP accuracy than 
the assembly with 15-kb reads (Supplementary Tables 25 and 26). 
Notably, the multicopy gene completeness in the assembly with 24-kb 
reads was 80.91% compared to 76.93% in the assembly with 15-kb 
reads, while the single-copy gene completeness remained comparable 
(97.2% with 24-kb reads and 97.3% with 15-kb reads; Supplementary 
Tables 27 and 28). In variant calling with DeepVariant, the 24-kb 
DeepConsensus reads had fewer total errors than the 15-kb reads in 
HG002 chr20 (Extended Data Fig.1c and Supplementary Table 29).

In summary, the increased accuracy of DeepConsensus expands 
the window of experimental choices. This allows researchers to 
consider using longer reads for applications that disproportionately 
benefit, such as the assembly of genomes with high duplication 
rates, difficult to assemble regions (such as the major histocompat-
ibility complex), phasing across a long gene or amplicon or variant 
detection in hard-to-map regions.

Table 2 | Yield improvement

Dataset Total 
reads

Q > 20 Q > 30 Q > 40 Perfect 
match

pbccs 90,432 88,561 47,767 10,207 4,395

DeepConsensus 103,093 96,260 60,490 19,485 9,291

Percent increase 14.00% 8.69% 26.64% 90.90% 111.40%

Polished HG002 chr20 11-kb reads from pbccs and DeepConsensus were quantified according 
to the total number of reads, reads at given thresholds (Qconcrdance > 20, 30 and 40) and reads that 
perfectly match the diploid assembly. Total reads represent the set of initial reads output by pbccs 
and DeepConsensus using Qpredicted > 20. The percentage increase in terms of yield achieved by 
DeepConsensus is listed for each category.
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Assessments of runtime. Subsequent to the development and 
benchmarking of DeepConsensus v0.1 presented in previous sec-
tions, we greatly improved speed in a new release, DeepConsensus 
v0.2, which was used for the M. musculus and R. muscosa 
assemblies.

DeepConsensus v0.2 processes the 11-kb HG002 data used 
for Table 1 at a rate of 0.883 zero-mode waveguide (ZMW) s–1 on 
a 16-thread central processing unit (CPU)-only machine (Google 
Cloud Platform (GCP) instances n2-standard-16) and at a rate of 
2.93 ZMW s–1 on a 16-thread machine with an attached NVIDIA 
P100 graphics processing unit (GPU). This corresponds to ~16,000 
CPU hours to process this SMRT Cell with CPU-only machines and 
~5,000 CPU hours with an attached GPU.

Discussion
The correction of errors in sequencing data is fundamental to both 
the generation of initial data from a sequencer and to downstream 
analyses that assemble, map and analyze genomes29–31. We introduce 
a transformer-based consensus generation method that reduces 
errors in PacBio HiFi reads by 42% and increases yield of 99.9% 
accurate reads by 27%. We show that with existing downstream 
methods, the improved reads result in better assembly contiguity, 
completeness and accuracy and more accurate variant calling.

The problem of correcting errors from an MSA of repeated 
sequencing is a single example of a broader category of problems 
that analyze the alignment of similar sequences. The most simi-
lar adjacent applications are error correction of unique molecular 
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Fig. 3 | DeepConsensus improves the contiguity and quality of the genome assemblies generated with hifiasm. a, Contiguity of the hifiasm assemblies 
with reads from pbccs and DeepConsensus with two PacBio SMRT Cells. b, Reference-free estimated quality (using YAK) of the hifiasm phased 
assemblies with reads from pbccs and DeepConsensus with two PacBio SMRT Cells. c, Contiguity of the hifiasm assemblies with three PacBio SMRT Cells. 
d, Estimated quality of the hifiasm phased assemblies with three PacBio SMRT Cells.

Nature Biotechnology | VOL 41 | February 2023 | 232–238 | www.nature.com/naturebiotechnology236

http://www.nature.com/naturebiotechnology


ArticlesNature Biotechnology

identifiers32 and error correction of Oxford Nanopore Duplex reads. 
Genome assembly polishing, which uses alignments of sequences 
from many molecules, is a similar application11,13,33. DeepConsensus 
models could be trained for these applications with minimal 
changes to its architecture. The gap-aware loss function used in the 
GATE approach could have utility to broader MSA-related prob-
lems. For example, related work by Rao17 demonstrated improved 
prediction performance across multiple tasks, including contact 
maps and secondary structure, and Avsec et al.34 used a long-range 

Enformer to predict gene expression. These applications could 
potentially benefit from the incorporation of alignment-based loss 
used in DeepConsensus, or the DeepConsensus framework could 
be applied to similar problem areas.

DeepConsensus presents opportunities to alter experimental 
design to better use its improvements to accuracy. We demonstrate 
that DeepConsensus allows for longer read lengths while maintain-
ing a high standard of read accuracy and yield. Certain applications, 
such as assembling difficult genome regions, may disproportionately  
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benefit from the use of longer reads. Additionally, because 
DeepConsensus learns its error model directly from training data, 
it allows a tighter coupling between library preparation, instru-
ment iteration and informatics. DeepConsensus could be trained 
on data from a modified procedure or additional data stream 
to more accurately estimate the potential advantage of the new 
method, decreasing the chance that the modification’s advantages 
might not be apparent due to optimization of the informatics to the  
older approach.

The improvements we demonstrate to assembly and variant 
calling use unmodified downstream tools (hifiasm) or tools with 
unmodified heuristics that use an adapted model (DeepVariant). 
Further iterating on the heuristics in these methods may allow them 
to take additional advantage of the DeepConsensus error profile or 
better use its higher yield of longer reads.

Future improvements to DeepConsensus include training with 
an expanded dataset that includes additional samples and chem-
istries, because our current training datasets only include Sequel 
II data from a few SMRT Cells. Supplementing training data with 
diverse species is an area of active development. There are sub-
stantial opportunities for improvements by refining the attention 
strategy (for example, AlphaFold2 uses a modified axial atten-
tion35) or by leveraging efficiency improvements to the transformer 
self-attention layer to consider wider sequence contexts36–38. We 
experimented with self-supervised pretraining for learning con-
textualized embeddings as an additional input for DeepConsensus, 
which is described in more detail in Methods. While these embed-
dings did not improve DeepConsensus performance, this may be 
due to the limited quantity of data used for pretraining. Using larger 
unlabeled databases for this pretraining is an area for future explo-
ration. Investigating the trade-offs between model size and accu-
racy could also enable faster versions that preserve high accuracy. 
These and other improvements will enable DeepConsensus to help 
scientists realize the potential yield and quality of their sequencing 
instruments and projects.
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Methods
Generation of 24-kb PacBio reads. DNA was extracted from HG002/NA24385 
cell pellets (Coriell Institute) with the MasterPure Complete DNA and RNA 
Purification kit (Lucigen, MC85200) and sheared on a Megaruptor3 (Diagenode) 
at a speed of 30. SMRTbell libraries were constructed with a SMRTbell Express 
Template Prep kit 2.0 (PacBio, 100-038-900). Size selection was performed 
with BluePippin (Sage Science) with an 18-kb high-pass filter. Sequencing was 
performed on the Sequel II System using Chemistry 2.2 and 30-h movies.

Dataset preparation. For all SMRT Cells, we ran pbccs on the subreads to  
generate CCS reads. pbccs generates a prediction for the overall read quality  
for each CCS read, and reads below Q20 are filtered out of the final HiFi read set. 
For dataset generation, we did not apply any filtering based on read quality  
for the CCS reads, and reads of qualities were included for training and inference. 
To generate labels for each set of subreads, the CCS sequence predicted by  
pbccs was mapped to the HG002 diploid assembly. The coordinates of the  
primary alignment were used to extract the label sequence from the HG002  
diploid assembly.

Subreads and labels were aligned to the corresponding CCS read. The CIGAR 
string from this alignment was used to match bases across the subreads and assign 
a label for each position. Subreads were broken up into 100-bp windows, and the 
corresponding label for each window was extracted from the full label sequence. In 
some cases, the label was longer than the subreads due to bases for which there was 
no support in the subreads.

Each subread base has associated PW and IPD values, and each set of  
subreads has four SN values, one for each of the four canonical bases. PW and IP 
values were capped at 9, and SN values were rounded to the closest integer and 
capped at 15.

Model and training. The transformer has emerged as the primary architecture 
for language understanding and generation tasks14,15 and uses self-attention to 
efficiently capture long- and short-range interactions between words crucial for 
understanding text. In recent work, this capability has been successfully used to 
improve modeling of protein sequences39.

We trained a six-layer encoder-only transformer model with a hidden 
dimension of 560 and two attention heads in each self-attention layer. The inner 
dimension of the feedforward network in each encoder layer is 2,048. The model 
considers 100 bases at a time from the full subreads, and the input at each position 
contains subread sequences and auxiliary features. The maximum number of 
subreads considered is 20. Auxiliary features include the PW and IPD measured 
by the basecaller, the SN ratio for the sequencing reaction, the strand of each 
subread and the sequence of the CCS read as predicted by pbccs. Each feature type 
is embedded using a separate set of learned embeddings, which are trained jointly 
with the model. An embedding size of two is used for the subread strand, and 
all other embeddings are of size eight. We used positional encodings that were a 
mix of sampled sine and cosines, as defined in the transformer14. For training, the 
Adam optimizer40 was used with a learning rate of 1 × 10–4, and input, attention 
and ReLU dropout values were set to 0.1. Our implementation builds off the one 
provided in the Tensorflow Model Garden.

For some examples, there exists a base in the label for which there is no 
evidence in any of the subreads. The predicted sequence for such examples would 
be longer than the input sequence length. The transformer–encoder block outputs 
an encoding for each input token. In natural language applications, variable-length 
prediction is implemented using a decoder block, which is not constrained in the 
number of outputs. For consensus generation, we did not use a decoder block due 
to computational constraints. To allow for variable-length prediction using only 
the encoder, we added a fixed number of padding tokens to the input sequence for 
each window. This allows the model to predict sequences longer than the subread 
sequences by replacing some of the padding tokens with additional bases.

The outputs from the encoder block are independently decoded using a 
shared feedforward layer with softmax activation. At each position, we predicted a 
distribution over the vocabulary, which consists of the four canonical bases (A, C, 
T and G) and an additional token to represent alignment gaps or padding, which 
we denote as ‘$’.

For training, we used chr1–chr18 from 11-kb PacBio Sequel II sequencing 
of HG002 (ref. 5), an extensively characterized genome curated by GIAB41. Truth 
labels for HG002 were derived from a HG002 diploid assembly (Data availability). 
Only training examples where the truth label could be uniquely mapped to a 
CCS read with pbmm2 were used, and non-unique mappings between truth and 
CCS were discarded. Chr21 and chr22 were used for tuning model parameters, 
and chr19 and chr20 were held out entirely during training and used for final 
assessment. For additional full holdouts, we used PacBio Sequel II sequencing of 
HG003, HG004, HG006 and HG007.

Models were trained for 50 epochs on 128 core v3 tensor processing units 
(TPUs) with a batch size of 256 for each core. Five models were trained with the 
production settings, and we chose the checkpoint with lowest loss on the tuning 
data. A custom gap-aware alignment loss was used, which is described in more 
detail in the following section. We call the combination of the gap-aware loss with 
transformer–encoder architecture GATE.

Loss function. Given an input MSA consisting of subreads and a consensus read 
and auxiliary features, the output of the transformer is a sequence y = y1y2...yN  
of probability distributions over the five-letter alphabet N = {A,T,C,G,$}, 
where $ refers to an empty character to model possible insertion errors in the 
HiFi consensus or padding. In other words, each yi is a probability distribution of 
non-negative entries that satisfies yi(A) + yi(T) + yi(C) + yi(G) + yi($) = 1. 
At inference time, the predicted nucleotide sequence z = z1z2...zN  is simply 
obtained by keeping the character with largest probability at each position, that is, 
zi = argmaxa∈Nyi(a) and removing the $ character from the resulting sequence. At 
train time, when parameters of the transformer-based model are updated, we need 
to define a loss function loss (y, t) differentiable with respect to the transformer 
output y given the correct nucleotide sequence t = t1t2...tM (notice that the lengths 
N of the transformer output and M of the correct nucleotide sequence may differ 
due to possible insertion or deletion in the consensus read). If we know that a 
given position 1 ≤ i ≤ N of the transformer output should predict the nucleotide at 
position 1 ≤ j ≤ M of the true sequence, then it is natural to use the cross-entropy 
loss lossCE(yi, tj) = − log yi(tj) to assess how good the prediction is. However, we 
need to choose which position of y predicts which position of t. For that purpose, 
we formally define an alignment of length k as an increasing subset of k positions 

π = {1 ≤ π(y, 1) < π(y, 2) < ... < π(y, k) ≤ N, 1 ≤ π(t, 1) < π(t, 2) < ... <
π(t, k) ≤ M}  
in both y and t, such that position π(y, v) in y predicts position π(t, v) in t, for 
v = 1, ..., k. Given such an alignment, positions π(ȳ) of y not in the alignment 
correspond to insertion errors, and ideally the prediction in those positions should 
be $ so that they are removed from the prediction at test time. For those positions, 
we therefore use the cross-entropy loss lossCE(yi, $). However, positions π(¯t) of 
t not in the alignment correspond to deletion errors, that is, nucleotides in the 
correct sequence that are missed in the MSA. For those errors, we consider a fixed 
error γ > 0, which is a parameter to be tuned. In total, given an alignment π, the 
total loss is defined as the sum of cross-entropy losses over aligned positions and 
insertion/mutation losses

lossπ(y, t) =

k∑

v=1
lossCE(yπ(y,v), tπ(t,v)) +

∑
v∈π(̄y)

lossCE(yv, $) +
∑

v∈π(̄t)
γ.

This loss depends on the arbitrary alignment π, which ideally should 
be chosen as a function of y and t so that the total loss is small. We 
therefore finally define the alignment loss as a (smooth) minimum over π, 
lossϵ(y, t) = −ϵlog(

∑
π
e−lossπ (y,t)/ϵ

), where ϵ ≥ 0 is a parameter to control how 
suboptimal alignments contribute to the loss. At the limit ϵ = 0, we simply keep the 
best alignment loss0(y, t) = min

π
lossπ(y, t), and taking ϵ > 0 allows us to create 

a smoother loss function to better align y and t. This loss is a particular case of 
the losses studied previously19, and we follow this approach to derive an efficient 
implementation to compute the loss and its gradient in y using differentiable 
dynamic programming, with a specific wavefront formulation to accelerate the 
computation on GPUs and TPUs.

Experiments with self-supervised pretraining. Inspired by the success of 
self-supervision in natural language processing (NLP), we used two pretraining 
tasks, predicting masked bases in the input sequence and predicting whether two 
fragments are contiguous, to learn contextualized representations of bases in a given 
subread. We used the same model architecture and training data described earlier, 
masked 15% of bases in the input sequence, varied the number of transformer layers, 
the hidden dimension, the number of multiattention heads and the sequence lengths 
and omitted the next-fragment pretraining objective. Although the pretrained model 
was effective in predicting masked bases in the held-out data, the contextualized 
embeddings learned in pretraining did not improve the accuracy of consensus 
generation, which is likely due to the limited amount of unlabeled subreads used for 
pretraining. Pretraining was removed from subsequent experiments to reduce the 
memory footprint of the final model and save computational resources.

Output FASTQ generation. DeepConsensus predictions for each 100-bp window 
were joined together, and $ tokens were removed to produce the final sequence 
that was output to FASTQ. Predicted base quality scores were generated from 
the output distribution at each position. The raw quality score for each base, 
qi, was computed as follows, where yi is the output distribution at position i: 
qi = −10log10(1 − max(yi)). Each raw quality score was rounded to the closest 
integer and capped at a maximum value of 60 to produce the final base quality 
score, Qi. Final base qualities were used to compute an overall read quality, Qpred, in 
the following calculation, which sums over all positions in the predicted sequence: 
Qpred = −10log10

∑
i 10

(−Qi/10). Reads with an overall predicted quality above 20 
were written to the final output FASTQ along with the corresponding quality string.

Analysis methods. Assessing read accuracy. HG002 11-kb predictions were 
mapped to a high-quality HG002 diploid assembly20. For each primary alignment, 
the calculate_identity_metrics.py script was used to compute identity, which is 
defined as

identity = matches/(matches + mismatches + deletions + insertions).
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The read identity values were used to compute the concordance read 
qualities, Qconcordance, which are computed as Phred-scaled scores of the identity: 
Qconcordance = −10log10(1 − identity). Reads with identity scores of 1 were separately 
categorized as having a ‘perfect match.’ Subread counts were determined using the 
np tag (number of full-length passes). The np tag was extracted from the consensus 
reads BAM output by pbccs.

We also used the bamConcordance tool, which reports the concordance 
between a read and a reference sequence along with error counts for each read. 
Error counts are broken down into five categories: mismatches, homopolymer 
insertions and deletions and non-homopolymer insertions and deletions. We 
used the bamConcordance output to assess the quality of reads and calculate the 
percentage error reduction across different categories.

Generating phased diploid assemblies with hifiasm. We used hifiasm version 
0.15.3-r339 to generate phased assemblies and the default hifiasm parameters, 
which have duplication purging on for the phased assemblies. We converted the 
primary assembly graph to get the primary assembly sequence and each of the 
haplotype graphs to generate the assembly sequences for each haplotype. Detailed 
execution parameters and commands are provided in the Supplementary Notes.

Reference-free assembly quality estimation with YAK. We used YAK version 
0.1-r62-dirty to derive estimated quality of the assemblies. For each sample, we 
generated a k-mer set with k = 31 from Illumina short reads of the same sample. 
We then ran YAK to determine the quality of each haplotype sequence that we 
generated during the hifiasm assembly generation process. YAK reports a Q value 
for assemblies, which is a Phred-scale contig base error rate derived by comparing 
31-mers in contigs and 31-mers in short reads of the same sample. We report the 
balanced_qv value reported by YAK as the estimated quality value of the assembly. 
The parameters and commands used are provided in the Supplementary Notes.

Assembly-based small-variant-calling assessment using dipcall. We used dipcall 
version 0.3 to derive small variants from the phased assemblies. Dipcall aligns the 
contigs to a reference sequence and derives a set of variants from the contig to 
the reference alignment. We then compared the derived small variants against the 
GIAB truth set of the associated sample. For all male samples, we used the –x hs38.
PAR.bed parameter as suggested in the documentation of dipcall.

To assess the small variants derived from all samples, we used GRCh38 as a 
reference and GIAB v4.2.1 as the truth set for small variants. All truth sets are the 
latest available truth sets from GIAB for the associated sample. We used hap.py 
to assess the quality of the variant calls. Commands and parameters used to run 
dipcall are provided in the Supplementary Notes.

Gene completeness assessment with asmgene. We used asmgene version v2.21 to 
determine the gene completeness of the assemblies. First, we aligned the Ensembl 
cDNA sequences release 102 to the GRCh38 reference genome using minimap2 
(v2.21) and found 35,374 single-copy genes and 1,253 multicopy genes in the 
reference. For each sample, we then aligned the sample cDNA sequences to each of 
the haplotype sequences of the assemblies and derived how many single-copy genes 
remained single copy (full_sgl reported by asmgene) and how many were duplicated 
(full_dup reported by asmgene). Similarly, we reported how many multicopy genes 
remained multicopy in the assembly (dup_cnt reported by asmgene). We derived 
the following metrics to assess the gene completeness of the assemblies:

gene completeness (%) =

full_sglassembly

full_sglGRCh38
,

duplication (%) =

full_dupassembly

full_sglGRCh38
,

complete multicopy (%) =

dup_cntassembly

dup_cntGRCh38
and

missingmulticopy (%) =

dup_cntGRCh38 − dup_cntassembly

dup_cntGRCh38
.

Detailed commands and parameters of asmgene are provided in the 
Supplementary Notes.

Assembly statistics with QUAST. We used QUAST version v5.0.2 to derive assembly 
N50, NG50, total assembly size and genome completeness of the assembly. QUAST 
is a reference-based assembly evaluation method that uses a reference sequence of 
the same sample or to determine the quality of the assembly. For our analysis, we 
used GRCh38 as the reference for each assembly.

We used N50, which is the sequence length of the shortest contig at 50% of 
the total assembly length, to determine contiguity of the assembly. NG50 is the 
sequence length of the shortest contig at 50% of the estimated genome length.  

For our human genome assemblies, we used GRCh38 as the reference sequence, so 
we used 3,272,116,950 bp (3.2 gigabases) as the estimated genome length to derive 
NG50. We only report N50, NG50, total assembly length and genome completeness 
against GRCh38 from the QUAST report. Detailed parameters and commands are 
provided in the Supplementary Notes.

Variant calling. DeepVariant performs variant calling in three stages: make_
examples, call_variants and postprocess_variants. The make_examples stage 
identifies candidate variants and generates input matrices containing pileup 
information. call_variants runs the input matrices through a neural network 
model, and postprocess_variants converts the neural network outputs to a variant 
call and outputs a Variant Call Format (VCF) file.

We used the latest DeepVariant model for PacBio HiFi data, v1.2, to call 
variants in pbccs predictions. Polished DeepConsensus reads or pbccs HiFi reads 
were aligned to GRCh38. This model was fine tuned from the Illumina WGS 
v1.2 model using PacBio HiFi sequencing reads generated using pbccs. Because 
DeepConsensus reads display different error characteristics than pbccs reads, 
we fine tuned a DeepVariant model for DeepConsensus. This model was also 
initialized from the v1.2 Illumina whole-genome sequencing (WGS) model, and 
the training data consisted of 11-kb and 24-kb Sequel II reads for HG002. We 
mixed both phased and unphased reads for the training similar to what is done for 
the v1.2 PacBio model. Chr1–chr19 were used for training, chr21 and chr22 were 
used for tuning, and chr20 was held out entirely.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data, predictions and analysis files are available at https://
console.cloud.google.com/storage/browser/brain-genomics-public/research/
deepconsensus/publication.

Code availability
Code and pretrained models are available at https://github.com/google/
deepconsensus. Sequencing data are available from the following sources:
∙ Sequel II data from Novogene42 at https://console.cloud.google.com/storage/
browser/brain-genomics-public/research/sequencing
∙ 15-kb HG002 and 24-kb HG002 reads from PacBio at https://console.cloud.
google.com/storage/browser/brain-genomics-public/research/deepconsensus/
publication/sequencing
∙ Sequel II data from PacBio at https://downloads.pacbcloud.com/public/dataset/
HG002_SV_and_SNV_CCS/
∙ HG002 diploid assembly at https://obj.umiacs.umd.edu/marbl_publications/
hicanu/hg002_hifi_hicanu_combined.fasta.gz
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Extended Data Fig. 1 | DeepConsensus with longer reads improves genome assembly contiguity. (a) HG002 read length distribution for 15kb and 
24kb DeepConsensus reads from two SMRT Cells. (b) Contiguity of the HG002 hifiasm assembly with 15kb and 24kb DeepConsensus reads from two 
SMRT Cells. (c) HG002 variant calling performance for 15kb and 24kb reads from DeepConsensus for two SMRT Cells.
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