Measuring the distance between multiple sequence alignments

Benjamin P. Blackburne Simon Whelan

Bioinformatics, 15 February 2012 Volume 28, Issue 4, Pages 495–502 doi.org/10.1093/bioinformatics/btr701

Melanie Mößer and Dominik Stroh Aktuelle Themen der Sequenzanalyse 5th July 2021

Motivation

How similar are MSAs produced by different aligners to each other and to a reference?

Assessment of seven aligners on two databases:

BALIBASE

Real-world data

INDELibleSynthetic data

Introduction

Existing scores are not true metrics!

Identity of indiscernibles $d(A,B) = 0 \leftrightarrow A=B$

Symmetry
$$d(A,B) = d(B,A)$$

Triangle inequality $d(A,C) \le d(A,B) + d(B,C)$

Why does the score need to be a metric?

All-against-all comparison!

Metrics

-7	

S¹₂

 G^2_1

S¹₃

 S_2^2

+ Sequence Index

Seq3 S³₁

+ Character Index

SSP

Seq1	S ¹ ₁	S ¹ ₂	S ¹ ₃	G ¹
Seq2	S ² ₁	G ²	S ² ₂	S ² ₃
Seq3	S ³ ₁	G ³	G ³	S ³ ₂

Seq1

Seq2

Seq3

S¹₁

 S_1^3

Pos

+ Tree Branch Index			1	
		Evo		

Jaccard/Hamming distance on homology sets of the MSAs

 G_1^3 **G**³₁ S_2^3 Seq1 S_1 S_2^1 S¹₃ $G_{3}^{1}(4)$ S_1^2 S_3^2 $G_{1}^{2}(4)$ Seq2 S_2^2 S_1^3 S³₂ $G_{1}^{3}(4)$ $G_{1}^{3}(2)$ Seq3

 G_3^1

 S^2_3

Comparison of metrics

Benchmarking of aligners (d_{evol})

Simulated data - INDELible

 5^{th} July 2021

Thank you for your attention!

Haskell implementation *MetAl* available on github!

Presentation, poster, sources and much more!

Questions?

Join Melanie at her poster talk and our following discussion!

