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Sequence alignment




The problem: We would like to know what has happened to two (or
more) homologous sequences since they last shared a common

ancestor!
v
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The quest to identify homologous positions in two
sequences
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Der ‘heilige Gral’ in der vergleichenden Sequenzanalyse




How to find this ‘true alignment’? We start with counting observed
differences between the contemporary sequences, allowing for
insertions, deletions and substitutions (Levenshtein Distance).

d Levenshtein(SlISZ)= 10

A G G |G||C||A[|T|[A|G|C G|G| T T|T||A |C
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The problem: The Levenshtein distance changes with
number and position of insertions/deletions

dLevenshtein(SlrSZ)=8

A G G |G||IC|[|A|[|T|[A|G|C GI|G||IT|T T A C

A G GI|C|A|[|T||A|GI|C|C G|-||IA]T T A C
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Finding the optimal alighment: Dynamic programming

A dynamic programming approach usually includes:

A mathematical description of the (biological) quality of a
solution,

i.e. a recursive objective function

The computation of all intermediate values needed for obtaining
the globally optimal solution, thereby avoiding double-

computations

The reconstruction of the globally optimal solution from the

values obtained in the previous step (backtracking)
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The Needleman-Wunsch Algorithm requires 3 things

Index j

1) The Matrix to take up
(partial) alignment scores

.

1 T
2 T
_ 3 ¢
x
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£
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 /
6) A Scoring Function )
+5,if a, = b,
S(ai,bj) =4 —2,if g, = bj

—6, for introduction of a gap

AN

O (i, J) = max-

@) An Objective Function

o(i-1,j-1)+S(a;,b;)
G(la]_l)'l'S(gap’bj)

o(i-1j)+S(a;,gap)

~

W,

10



The Needleman-Wunsch Algorithm:
1) Initialise the matrix with cumulative gap scores

Index i

Index j

=

0 2 3 4 5 6 7 8

G C T C G T A

0 -12 -18 -24 -30 -36 -42 -48
1 T 6
2 T -12
3 C -18
4 A -24
5 T -30
6 A 36

+5,if a,=Db;,
S(a;,b;)=1-2,if a;=b,

-6, for introduction of a gap
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The Needleman-Wunsch Algorithm:
2) Recursive computation of intermediate alignment scores

Index j

Sequence B

o(i-1,-1) o(i-1,)

- 3

lo(i—1,j-1)+38(a,,b,)]
o(i,j-1) mpoi.j) = maxjo(i.j - + S(gap.b))

Index i
Sequence A

ofi,j) is the optimal alignment score up to and
including a;and b,
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The Needleman-Wunsch Algorithm:
2) Recursive computation of intermediate alignment scores

Index j

Sequence B

Index i
Sequence A

o(i-1,j-D+ST,T)=0+5

o(i,j-1)+S(gap,T)=-6+(-6)
o(i-1,))+S(T,gap)=-6+ (—3)

—

_6 -a(i,j) = max

2=
—_—

ofi,j) is the optimal alignment score up to and
including a;and b,
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The Needleman-Wunsch Algorithm:
2) Recursive computation of intermediate alignment scores

index j
>
Sequence B
- < 0 N
5| 8
c
R ~
O
(]
(Vp]
o(i-1,j-)+S(T,T)=5
T —6 o(i,j)=max{ o(,j-1)+S(gap,T)=-12
o(i-1,7)+S(T,gap)=-12
v

ofi,j) is the optimal alignment score up to and
including a;and b,
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The Needleman-Wunsch Algorithm:
3) Backtrace: Rekonstructing the optimal Alignment

Index j

0 -6 -12 -18 -24 -30 -36 -42 -48

1 T -6 g 5 -1 -7g-13¢-19¢-25%-31¢-37
ERR
2 T [-12 -1 3 |:> -3 -2 g -8 |:>-14|:>-2q:>-26

> @Q@Q
3 C |-18 2 3p)-30)-90)-15
= U-mu- @8 «’87°°°g
- 4 A |-24 -9 6600 1E)-5 -4
Qﬂ@%& GQJ Q & €
5 T | -30 -4 4r>-2 60> 0
v {}Qﬂ} {} {}93 & {}Qﬂ
6 A |-36 5 2 11

Remember: The Backtrace starts in the case of Needleman-Wunsch always at the lower right cell
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The Needleman-Wunsch algorithm (Backtracking):
Reconstructing the optimal alignment

Index j
>
o 1 2 3 4 5 6 71 8 [TGCTCGTA*}
T--TCATA*
T G € T € G T A
0 -6 -12 -18 -24 -30 -36 -42 -48
1 T 535@ 149 7% 13@19@25?_}31@37
BB B B
2 T |12 1 3¢n3 z@s@u@zo@zs
ﬁﬁbﬂﬂb

3 C | -18 ﬂm ﬂ% %3@9%15

Index i

4 A |-24 9 2 6¢|o 145 -4
mm R BB R
5 T |-30 -4 432 640
v QM ﬂ ﬂtb N ﬂtb
6 A [-36 -25 -21 5 2 11

Just follow the pointers backwards to the origin to reconstruct the optimal

alignment.
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Smith-Waterman sequence alignment: An overview

+5,if a,=b,
Given Sequences A and B and the scoring function s(a,b,) ={-2,if a,=b,
-6, for introduction of a gap

Index j
o 1 2 3 4 5 6 7 8’ * initialize a n x m matrix representing

sequenzen A and B of length m and n,
respectively. Set values of first row

o o 0 0 O O O 0 O and column to 0.
N N N * Compute recursively the o(i j) =
1 T|0 5 0 0 5 0 0 5 0 {
B B B B S 1% a(i—l,j—1)+s(ai,bj) match / mismatch
2 T|l0 5 3 0 5 3 0 5 3 max =1 CU-Lp+s(a.-)  gapinB

o(i,j—1+s(=,b)) gap in A

PR B
3C0038%210403
% 9

6 4 8

3 0
|4 Ao o o 2 @2 o * The optimal local Alignment-Score is
R BB B 5 . : . .
s 1o s o o0 7 a4 2 1é&7 obtal.ned by |dent|fy.|n.g the cell with
v RS 4B B 4% the highest score ofi ,j).
6 Ajo0 o0 3 0 1 S5 2 7 1 * The optimal local alignment is
TCGT* obtained by a backtrace from this cell

Optimal local alignment TCAT* to the first cell with a value of 0. 17




Scoring sequence similarity

What is a sensible way to judge sequence similarity?

1. fraction of identical sequence positions in two sequences

(+5,if q, =D,

S(a,b;)=1-2,if a;=b,

|—6, for introduction of a gap

1. fraction of similar sequence positions in two sequences

A

G

C

T

?

?

?

?

?

?

?

?

(0ol |>

A G C T
A 5 2 |-2 | -2
G |-2 |5 -2 | -2
C -2 (-2 |5 -2
T -2 |-2 |-2 |5
This is not too relevant for
DNA sequences
but of great importance for
protein sequences
J
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Scoring amino acid sequence similarity

@ Positive @ Negative
« Side chain charge at physiological pH 7.4
A. Amino Acids with Electricaly Charged Side Chains
Positive Negative
A A )
Arginine Histidine Lysine Aspamc Acid Glutamic Acid
(Arg) 0 (His) m (Lys) (Asp) Q (Glu) G
A0 oo K0 warn "/o,m.; A0 wrss A0 wrs
(] O O
NH, NH, NH, NH,
PKa9.00 PKa9.09 pka sm PKa9.66. PKa 958
— O
pra371
O
ZQNH
NH N ©o
|-12N~< oh,
@NH2 pKa 1067
pka1210
B.  Amino Acids with Polar Uncharged Side Chains C. Special Cases
Serine Threonine Asparagine Glutamine Cysteine Selenocysteine  Glycine Proline
(Ser)e (Thr) o (Asn) m (Gln) @ (Cys)@ (Sec) 0 (Gly) @ (Pro) 0
pK.aZB pKaZ.Zn pKaZ|6 pKAle

T )

o o 0=<_ o=
pmns ph&% K3876 K 9on NH, NH. NH.
SH SeH

D.  Amino Acids with Hydrophobic Side Chain

Alanine Isoleucine Leucine Methionine Phenylalanine Tryptophan Tyrosine Valine
(Ala)o (le) 0 (Leu) o (Met) @ (Phe) e (Trp) @ (Tyn 0 (Valio
DK 0 pKa 238 pKaZ?A
"/o
mz
.,x @23
NH, NH,
PKa9.09 pKa9.34 pK 904
NH2
NH,
PKa971
OH
pKa 10,10
pKa Data: CRC Handbook of Chemistry, v. 2010
Dan Cojocari, Departmen of Medical Biophysics, University of Toronto 2009

Some amino acids are more

similar to each other than

others. To understand why this

is relevant during sequence

alignment, recall the two main

reasons for assessing sequence

similarity:

1) Estimating evolutionary
distance

2) Deciding on functional
similarity
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Scoring amino acid sequence similarity

Rationale

Different amino acids can vary in their similarity with respect to:
1) chemical properties (e.g., hydrophilic/lipophilic)

2) size

3) difference in the underlying codons (Glu-Asp: 1 substitution,
Glu-Phe: 3 substitutions)

4) charge (positive/negative/neutral)

-

It is hard to invent de-novo a meaningful scoring scheme considering all
these aspects. An empirical approach may be a more promising way to
achieve this goal.

_

~
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Scoring amino acid sequence similarity

Approach 1:

invent a scoring schema based on observed aa changes in more closely
related protein sequences (PAM matrix)

Approach 2:

invent a scoring schema based on observed aa changes in conserved blocks
of more distantly related protein sequences (BLOSUM).

WE THINK WE KNOW THE TRUE ALIGNMENT

21




Scoring substitutions using the PAM matrix
(Point Accepted Mutations)

Key idea: The substitution score should depend on s
the evolutionary distance between sequences B-7 G-I

ARTJ

B-C A-D B-D A-C

accepted mutations —”
ACGH DBGH ADIJ CBIJ

The PAM matrices derived by Dayhoff (1978):
= are based on evolutionary distances.

* have been obtained from carefully aligned closely
related protein sequences (71 gapless alignments of
sequences having at least 85% similarity).

M. Dayhoff

Reference: Dayhoff et al. (1978). A model of evolutionary change in proteins. In Atlas of
Protein Sequence and Structure, vol. 5, suppl. 3, 345-352. National Biomedical Research
Foundation, Silver Spring, MD, 1978.

[We think we know (approximately) the ‘true’ alignmentj

For details see the Grundlagen lecture



Using PAM scoring matrices for evaluating alignments

These log-odds scores can now be used for evaluating pairwise alignments

Cys
Ser
Thr
Pro
Ala
Gly

Asn

Asp
Glu
Gin
His
Arg
Lys
Met

lle

Leu
Val
Phe
Tyr
Trp

Aromatic
Polar
Basic
Acidic

S<XTM<Kr—TXAIOPMUZO>»TUTV-A®MO

T PAM250 matrix (log-odds)
2 1 3
14 1 0 6
2 1 1 1 2
3 1 0 1 1 5
4 1 0 1 0 0 2
5 0 0 1 0 1 2 4
5 0 0 1 0 0 1 3 4
5 4 414 0 0 1 1 2 2 4
3 414 414 0 4 2 2 1 1 3 6
4 0 414 0 -2 -3 0 1 1 1 2 6
5 0 0 41 414 -2 1 0 0 1 0 3 5
5 2 414 2 4 3 2 3 -2 41 -2 0 0 6
2 4 0 2 414 -3 -2 2 -2 2 -2 -2 2 2 5
6 3 2 3 -2 4 3 4 3 -2 -2 3 -3 4 2 6
2 4 0 414 0 1 -2 2 -2 2 -2 2 -2 2 4 2 4
4 3 3 5 4 5 4 6 5 5 2 4 5 0 1 2 41 9
o 3 3 5 3 5 -2 4 4 4 0 -4 4 2 414 1 -2 7 10
84 2 5 6 6 -7 -4 -7 -7 5 -3 2 -3 4 5 2 6 0 0 17
cC 8§ T P A G N D E Q H R K M I L V F Y W
Cys Ser Thr Pro Ala Gly Asn Asp Glu GIn His Arg Lys Met Ille Leu Val Phe Tyr Trp
H F Y W
S T N Q Y
H R K
D E

Salignment= Sn(TY) + Sp(A,S) + So(H,D) + S,(G,G) + Si(K,D)

=-3+1+1+5+0=4

Source: J. van Helden
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There is way more than just PAM!, so which model should

| use?

PAM

BLOSUM

JTT (Jones, Taylor,
Thornton)

WAG (Wheelan and
Goldman)

LG (Le and Gascuel)

mtREV

cpREV

CAT

Count-based. Analysis of 71 closely related protein families.
Different evolutionary distances are extrapolated.

Count-based. Analysis of conserved, gap-free blocks within
diverged proteins. Training data vary for different matrices

Count-based. Increased training data, single linkage clustering

Approximate likelihood method. Globular protein sequences
comprising 3,905 amino acid sequences split into 182 protein
families.

Approximate likelihood method. Refines WAG by incorporating the
variability of evolutionary rates across sites and by using a much
larger and diverse database

Maximum likelihood (ML) method from the complete sequence
data of mtDNA from 20 vertebrate species

Transition matrix based on the best tree, called cpREV, takes into
account distinct substitution patterns in plastid-encoded proteins

Bayesian mixture model that allows the amino-acid replacement
pattern at different sites of a protein alignment to be described by
distinct substitution processes.

Dayhoff et al. (1978) Atlas of
Protein Sequence and Structure 5
(3): 345-352

Henikoff et al. (1992) PNAS 89
(22): 10915-10919

Jones et al. (1992) Computer
Applications in the Biosciences 8:
275-282

Wheelan et al, (2001) Mol Biol
Evol 18 (5): 691-699

Le et al. (2008) Mol Biol Evol
(2008) 25 (7): 1307-1320

Adachi et al (1996) J Mol Evol.
42(4):459-68.

Adachi et al. (2000) J Mol Evol.
50(4):348-58.

Lartillot et al. (2004) MBE
21(6):1095-109

1 list of models is not exhaustive


http://www.ncbi.nlm.nih.gov/pubmed/8642615
http://www.ncbi.nlm.nih.gov/pubmed/10795826
http://www.ncbi.nlm.nih.gov/pubmed/15014145

The basic workflow of ProtTest Program for selecting

the model giving the best fit to the data

User
input

ProtTest

4
4 N

B\
N

£ ¢ AIC \

~_ calculation
R

-

Tree
(optional)

Candidate
models

WAG
T
Dayhoff +F
mtREV  +
RtREV +G
CpREV
Blosum

VT

Sample
size
criterion

(only for AlICc
or BIC)

ﬁ

- (Phymi)
N

A

.

/ : <
~ Sample size
- _calculation -

N

N
\\\
\\ .
ML- \\ ;
. calculations == User

L

y

|

—p

Ve

\\
\\

AlCc

Y

_calculation
3 y

y

y,
y-

/
y

&
y

BIC

calculation
y

7
y

Output

Ranking of models

WAG+F+G
WAG+G
WAG+I
WAG+G+I
etc

0.56
0.32
0.12
0.00

“Best” tree

Relative importance
of parameters:

alpha: 0.88
p-inv: 0.12
+F S0 56

Model-averaged
param. estimates:

alpha: 1.63
p-inv: 0.25

Federico Abascal et al. Bioinformatics 2005;21:2104-2105
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Multiple Sequence Alignment

Picture from http://www.bioinformaticsworld.com
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Multiple Sequence alignment
What is it good for?

chicken
xenopus
human
monkey
dog
hamster
bovine

guinea pig

PI§YSS—---PLRGEAGVLPFQQ IHQYKRGIVIZOCC
AIQ%YSG---PODNELDGMQLQP QKM eanvirieefe
L QOVELGGGPGAGSLQPLA IO KRGIVIZOCC
P QOVELGGGPGAGSLQPLA SLQjex{eanvrieele
L DVELAGAPGEGGLQPLA ALQiexesnvrielele
P QLELGGGPGADDLQTLA AQQuexexnvnelele
P ALELAGGPGAGG-=---- IYHOKRGIVIZOCC )Y
P

QTELGMGLGAGGLQPLA IO KRGIVOCC Kedy

* * *khkkkkeoekkk * o ke kk*k




Scoring multiple sequence alignments:

Sum Of Pairs Score (simple)

Approach: break an unsolved problem down to problems for which

there already exists a solution.

Seql: AGA--CTA
Seq2: G-A--CTT
Seq3: AGAAACTT
Seql: AGA--CTA Seql: AGA--CTA
Seq2: G-A--CTT Seq3: AGAAACTT

Seq2: G-A--CTT
Seq3: AGAAACTT
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Computing the Sum Of Pairs Score

Seql: AGA--CTA
Seq2: G-A--CTT
Seq3: AGAAACTT

1
Seql: AGA--CTA Seql: AGA--CTA Seq2: G-A--CTT
Seq2: G-A--CTT Seq3: AGAAACTT Seq3: AGAAACTT
+5,if a; =D,

S(ai,bj) =1-2,if aq, #bj

—6, for introduction of a gap

I

Seql: AGA--CTA Seql: AGA--CTA Seg2: G-A--CTT
Seq2: G-A--CTT Seq3: AGAAACTT Seq3: AGAAACTT
Score: +5 Score: +11 Score: 0

SUM OF PAIRS SCORE: 16

32



Aligning multiple sequences

Task: Align 4 sequences following a pairwise approach.

Sequence 1l: NYLS }_ NYLS

Palrl[Sequence 2: NFS N-FS

-2

P Sequence 3: NKYLS NKYLS
alr Sequence 4: NFLS NF-LS

33



Aligning multiple sequences
Scoring the alignment of two alignments

Task: Align 4 sequences following a pairwise approach.

Sequence 1l: NYLS
Pair 1 < NYLS N-YLS
Sequence 2: NFS N-FS
N--FS
—
NKYLS
D Sequence 3: NKYLS NKYLS NF—LS
alf Sequence 4: NFLS NF-LS
S1: NYLS Score(LFLL) = (S(L;,L;3)+
S2: N-FS S(Ly,Ly)+
S(F,,L3)+
S(Fy,Ly4))

S3: NKYL
S4: NF-L

34




Progressive alignment strategy
Scoring the alignment of two alignments

Task: Align 4 sequences following a pairwise approach but use different pairings.

Sequence 1l: NYLS _
Pair 1 9 N-YLS N-YLS
Sequence 3: NKYLS NKYLS
E::> NKYLS
N-F-S
bair 2 Sequence 2: NFS NF-S N—FLS
alr Sequence 4: NFLS NFLS
Alignment 1: Alignment 2:
S1l: N-YLS S1l: N-YLS
S2: N--FS S3: NKYLS
S3: NKYLS S2: N-F-S
S4: NF-LS S4: N-FLS

Thus, the alignment can change with the order of the sequences!
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Progressive alignment strategy

Task: Cope with the problem that the alignment changes with the sequence order

Pair 1

Pair 2

i

Sequence
Sequence
Sequence
Sequence

= W N -

NYLS
NF'S

NKYLS |

NFLS

=

—

)
A 4

Remember the assumption: The sequences evolved along a tree
Thus, it may be a good idea to align them along exactly this tree.
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Progressive alignment strategy

Reconstruct a tree N-YLS yN-vYLS
Seql: NYLS
Align the sequences NKYLS NKYLS
progressing from the leafs N-F-S
to the root N-FLS Seqg3: NKYLS
Align sub-alignments
(profiles) at the nodes Seq2: NFS
where internal branches
meet NF-S
: NFL
NFLS Seq4: NFLS

[Problem: Where do we get the tree from when we require an A
MSA for reconstructing such a phylogeny? Typical hen-and-egg

problem...
\ /
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Getting the tree for a set of sequences without
performing an MSA

Re-formulation of the problem: Look for the tree that groups sequences
according to their similarity rather than for the tree that groups sequences
according to their phylogenetic relationships.

Seql
Seql: NYLS
Seqg2: NFS Seq3
Seq3 ¢ NKYLS Seq?2
Seq4 : NFLS use clustering

Seq4d

compute all optimal algorithm to infer ﬁ
pairwise alignments tree

S1 S2 S3 sS4

Seql
SeQ2 m——— Seq2 .
Se2||4 compute pairwise 51 0
Seql m—— distance matrix*
5603 | N S2 4 0
Seql m— Seq3 ! S3 2 4 0
Segd m——— Seq4d
SeQ2 m———
Seq3 * ) 2 ' i

*values in this matrix are for illustrative purpose only and are not computed from the example sequences



ClustalW (Higgins et al. 1994)
One of the most well-known MSA algorithms

Journal List > Nucleic Acids Res » v.22(22); Nov 11, 1894 > PMC308517

32NN

Nucleic Acids Research

Nucleic Acids Res. Nov 11, 1994, 22(22): 4673-4680. PMCID: PMC308517

CLUSTAL W: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap penalties and
weight matrix choice.

J D Thompson, D G Higgins, and T J Gibson
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Progressive alignment strategy
Problems: Once a gap always a gap

GARFIELD THE LAST FA-T CAT

GARFIELD THE FAS- ——--T CAT
GARFIELD THE VERY FAST CAT
-------- THE FAT- —-—-- CAT

ALIGNMENT SCORE: 343

GARFIELD THE FAS- ---T CAT

GARFIELD THE LAST FA-T CAT
GARFIELD THE VERY FAST CAT

GARFIELD THE LAST FAT CAT
GARFIELD THE FAS- --T CAT

_— \

[THE FAT CATJ [GARFIELD THE VERY FAST CAT} [GARFIELD THE FAST CATJ [GARFIELD THE LAST FAT CATJ

4 3 2 1

It is easy to see that the greedy strategy of a progressive alignment is not
guaranteed to arrive at the globally optimal alighment.

43

Alignment computed with Clustalw?2 using a custom guide tree as shown without sequence weights



Progressive alignment strategy
Problems: Once a gap always a gap

GARFIELD THE LAST FAT- CAT

-------- THE ---- FAT- CAT
GARFIELD THE VERY FAST CAT
GARFIELD THE ---- FAST CAT

ALIGNMENT SCORE: 366

GARFIELD THE VERY FAST CAT |\ | =m—m—————— THE ---- FAT CAT

NG _— N\

[GARFIELD THE VERY FAST CAT} [GARFIELD THE FAST CAT:] [THE FAT CATJ [GARFIELD THE LAST FAT CATJ

3 2 4 1

[GARFIELD THE ---- FAST CATJ {GARFIELD THE LAST FAT CAT]

It is now easy to see that the appropriate choice of the guide tree has a
substantial impact on the outcome of a multiple sequence alignment.
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How to overcome previous (and limiting) decisions?
Iterative alighment strategies aim at optimizing an initial and
potentially sub-optimal alignment (outline)

Set of

sequences
reject/revert alignment
l ;
Initial random -
. modification modified
(sub-optimal) —> .

alignment alignment

no!

[optimized}
. D
alignment

la ssess score

|

acceptance
function

l accept

[Convergence? }

END

yes!

46



One example of a stochastic iterative alignment

MUSCLE

1.1 k-mer 1.2 1.3 progressive
counting UPGMA alignment
— — ) =—= wsa
unaligned . '
sequences k-mer distance TREE1
matrix D1 2.1 compute
%ids from MSA1
—— <_f’1 N : Kimura distance
P — | h N matrix D2
e 2.3 progressive
MSA2 alignment TREE2 PR
B —=_— No,
: ........................... _"_~_ delete
< 7 S—— N /
N var\'> '”:;_':_'_'::':_'_':_'::::__E [ V === -
= 33re-align ga . Y/ — Yes,
/?§< 3.2 compute  profiles 3.4 SP | — save
\5\ subtree profiles score better? 1o ns
3.1 delete ) g

repeat
edge from TREE2 epe -
giving 2 subtrees

Robert Edgar (2004) Nucleic Acids Res 32:1792--1797
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MSA with Muscle: Scoring the alignment of column x from
profile 1 and column y from profile 2 (Log Expectation score)

frequency of i and j in columns x and y, respectively

frequency of a gap in column x of profile 1

joint probability of i
and j being aligned”

/
LE" = (=750~ fGnogEEf f;
/

frequency of a gap in column y of profile 2

i,j represent letters from the sequence alphabet

PiP;

background frequencies of i and j*

48
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Stochastic iterative alignment
MUSCLE: Steps 1 - 2

1.1 k-mer 1.2 1.3 progressive
counting [ UPGMA alignment
- N N N P —
\—»\" L) [ i ———= MSA1
unaligned - ‘
sequences k-mer distance TREEA1 .
matrix D1 2.1 compute
- %ids from MSA1
— yz Kimura distance
e o N matrix D2
"""""""""""" " 2.3 progressive
MSA2 alignment TREE?2 2.2 UPGMA wa
[] ——= — No,
—_ —F——— delete
< 7 N ———— [ ) P ——— - XS
L) e Vo= = /
——— 3.3re-align MSA Y — = VYes,
/7?< 3.2 compute  profiles 3.4 SP b save
subtree profiles score better? oo

3.1 delete
edge from TREE?2
giving 2 subtrees

repeat

1) generate initial alignment

1)

2)

3)

compute pairwise kmer distance to
produce distance matrix D1

use UPGMA* clustering to produce
guide treel

perform progressive alignment along
guide tree 1 producing MSA1

2) generate refined alignment

1)

2)

3)

compute pairwise corrected distances
from MSAL1 resulting in distance matrix
D2

use UPGMA* clustering to produce
refined guide tree D2

perform progressive alignment along
guide tree 2 producing MSA2

49
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Stochastic iterative alignment
MUSCLE: Step3 — Iterative optimization

1.1 k-mer 1.2 1.3 progressive
counting [ UPGMA alignment
— N IN \ | —=
N y E— — MSA1
unaligned - ‘
sequences k-mer distance TREEA1 .
matrix D1 2.1 compute
- %ids from MSA1
—— A yz _ Kimura distance
i— T D matrix D2
"""""""""""" " 2.3 progressive 22 UPGMA
MSA2 alignment TREE2 wa
[ ——= — No,
—_ —F——— delete
< 7 N ———— [ N, P ——— - XS
L) Vo ==
——— 33re-align g . Y — = VYes,
/7?< 3.2 compute  profiles 3.4 t;s’:t b save
\5\ subtree profiles Score betters \isa3
3.1 delete repeat

edge from TREE2
giving 2 subtrees

3)

4)

Optimization of alignment

1) bisect guide tree by removing internal
edge (edge chosen in order of
decreasing distance from root)

2) compute the profile (sub-alignment) for
the sequences of each sub-tree

3) align the two profiles and determine
alignment score

4) compare resulting score to previous
score.

1) If alignment score has increased,
store optimized MSA together with
score

2) else discard

5) Goto 1 unless convergence or maximum
number of iterations reached.

Output optimized alignment
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Consistency based alignment strategies
(T-COFFEE)
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The COFFEE strategy

Point: The optimal MSA is defined as the one that agrees the most with
all optimal pair-wise alignments

Features:

> does not depend on a specific scoring system

> can apply any method capable to align two sequences

> position dependent, i.e. the score associated with the alignment of
two residues depends on their position within the sequence rather that
their individual nature

Rationale: given a set of independent observations, the constellation

most often observed is typically closer to the truth

Consistency based Objective Function For alignEment Evaluation (COFFEE)
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Strategy of T-Coffee for aligning multiple sequences

A

: }

C

ClustalW / Lalign

B B e B
A A —
C [ p—
C C = C
ClustalW Primary Library Lalign Primary Library

\(Global Pairwise Alignments) / \ (Local Pairwise Alignments) /

Weighting

Primary Library

Extension

Juswusgi|e anissat3oud

Extended Library —

v

Ow >

MSA

Notredame et al. (2000) J Mol Biol 302:205-217
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T-Coffee: Primary Weighting

SeqA GARFIELD THE LAST
SeqB GARFIELD THE FAST

SeqA GARFIELD THE LAST
SeqC GARFIELD THE VERY

SeqA GARFIELD THE LAST
SeqD --—---—- THE ---—-—

FAT CAT

CAT --- 88

FAST CAT

FAT CAT

FAT CAT 100

SeqB GARFIELD THE ---- FAST CAT 100
SeqC GARFIELD THE VERY FAST CAT

SeqB GARFIELD THE FAST CAT
SeqD ---——--- THE Fa-T car 100

SeqC GARFIELD THE VERY FAST CAT

SeqD -——————- THE ---- Fa-T car 100

Compute primary weight for each pairing as the %identity from the alignment it comes from
(matches/aligned positions * 100)
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Pooling the two Libraries

Rule: If any residue pair is present in both libraries, it is merged into a single entry
with a combined weight equal to the sum of the individual pairs.

ClustalW Primary Library Lalign Primary Library
SeqA GARFIELD THE LAST FA-T CAT SeqA GARFIELD THE ..
SeqC GARFIELD THE VERY FAST CAT SeqC GARFIELD THE

{ )
\>Ql7

i 1 ([ 1
SeqA GARFIELD THE LAST FA-T CAT
SeqC GARFIELD THE VERY FAST CAT

Primary Library

Note, non-observed residue pairings get a weight of 0
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Extending the primary library

Follow a triplet approach: ie, look at the induced alignment A-B via C

We have one pair-wise alignment of sequences A and B.

SeqA GARFIELD THE LAST FAT CAT

SeqB GARFIELD THE FAST CAT ---

We have one indirect pair-wise alignment of sequences A and B via sequence C.

SeqA GARFIELD THE LAST FA-T CAT SeqB GARFIELD THE ---- FAST CAT
SeqC GARFIELD THE VERY FAST CAT SeqC GARFIELD THE VERY FAST CAT

\

SeqA GARFIELD THE LAST FA-T CAT

s YHITE T0 = 111 1]

SeqB GARFIELD THE ---- FAST CAT
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Extending the primary library

Follow a triplet approach: i.e., look at the induced alignment A-B via C

We have one pair-wise alignment of sequences A and B.

SeqA GARFIELD THE LAST FAT CAT

|||||| ||| |||| ||| [Primary Weight: 88 |

SeqB GARFIELD THE FAST CAT ---

We have one indirect pair-wise alignment of sequences A and B via sequence C.
SeqA GARFIELD THE LAST FA-T CAT

|PrimaryWeight: 77 | o
S = 1L S
>Pr|mary Weight: 100

SeqB GARFIELD THE ---- FAST CAT

And we have one indirect pair-wise alignment of sequences A and B via sequence D.

RFIELD THE LAST FA-T CAT
SeqA GA S ¢ PrlmaryWeight: 100|

1 — 111 1H1< §
>Pr|mary Weight: 100

SeqB GARFIELD THE ---- FAST CAT
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Extending the primary library

Follow a triplet approach: i.e., look at the induced alignment A-B via C

Pair-wise alignment of sequences A and B.

Pairing Weight
SeqA GARFIELD THE LAST FAT CAT -

|||||| ||| |||| ||| [Primary Weight: 88 |

<
N
SeqB GARFIELD THE FAST CAT --- GQ
&

GAl_ GBl 165

GAZ_GBZ 165

Indirect pair-wise alignment of sequences A and B via C.
SeqA GARFIELD THE LAST FA-T CAT

SeqB GARFIELD THE ---- FAST CAT

Tao— Tgo 265

Hao- Heio 265

Weight: 77
Lazz—Fp12 88

Indirect pair-wise alignment of sequences A and B via D.

SeqA GARFIELD THE LAST FA-T CAT

SeqB GARFIELD THE ---- FAST CAT

FA17 - CB17 88

Weight: 100

Faiz—Feis 177
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Extending the primary library

Follow a triplet approach: i.e., look at the induced alignment A-B via C

Pair-wise alignment of sequences A and B.

SeqA GARFIELD THE LAST FAT CAT

Extended Library

Pairing

GAl - GBl

|| TR TN TR TR ——

SeqB GA  Use the extended library for the final scoring of the MSA.

Indirect pair- Note, these are now position-specific scores?!

SeqA GA

T o= 1] ] e
SeqB GARFIELD THE ---- FAST CAT

Indirect pair-wise alignment of sequences A and B via D.

SeqA GARFIELD THE LAST FA-T CAT

/

[ 1 ] g
SeqB GARFIELD THE ---- FAST CAT =

HAlO' H B10

I-A12 - I:B12

FA17 - CB17

FA17 - I:B13

Weight
165
165

265

265

88

88
177

1 we never had this before!
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Different programs, different alignments, different

biological conclusions

ATTI_DROME
ATTA_DROME
SW_P36193

ATT1_DROME
ATTA_DROME
SW_P36193

ATTI_DROME
ATTA_DROME
SW_P36193

ATTI_DROME
ATTA_DROME
SW_P36193

ATTI_DROME
ATTA_DROME
SW_P36193

ATTI_DROME
ATTA_DROME
SW_P36193

ATT1_DROME
ATTA_DROME
SW_P36193

ATTI_DROME
ATTA_DROME
SW_P36193

ClustalW

MQKTSILILANSS FATAEANPESETTGP IRVRRQVLGGS LISSNPAGGADARLNLHKGIG
\H)RTSILIW\L\ALF\I.E\LPSLPTTUP[R\kRU\LhuSLTSVP\hh\D\RI )
. IMIAVINT [§- - - - - KPP - - - - - - - - YSPRIJTSHPRP - IRVRR - - -

NPNHNVVGQVFAAGNTQSGPVTTGGTLAYNNAGHGASLTKTHTPGVKDVFQQEAHANLFEN
NPNHNVVGQVFAAGNTQSGPVTTGGTLAYNNAGHGASLTKTHTPGVKDVFQQEAHANLEN

NGRHNLDAKVFASQNKLANG FEFQRNGAGLDYSHINGHGASLTHSNFPGIGQQLGLDGRA
NG RHNLDAKVFASQNKLANG FEFQRNGAGLDYSHINGHGASLTHSNFPGIGQQLGLDGRA

NLWSSPNRATTLDLTGS ASKWTSGPFANQKPNFGAGLGLSHHFG
NLWSSPNRATTLDLTGS ASKWTSGPFANQKPNFGAGLGLSHHFG

N | RVRROQVLGGSLESNPAGGADA

VAL LS - - - - - . Bl | R VRRQVLGGS LISNPAGGADA
CFRy I VELBLA - C VBV TEGKPRPYS PRIGISHP RO SNE A - - - - - - - - - - - - -

QEAHANLFNNGRHNLDAKVFASQNKLANGFEFQRNGAGLDYSHINGHGASLTHSNFPGIG

QEAHANLFNNGRHNLDAKVFASQNKLANG FEFQRNGAGLDYSHINGHGASLTHSNFPGIG

QQLGLDGRANLWSSPNRATTLDLTGSASKWTSGPFANQKPNFGAGLGLSHHFG
QQLGLDGRANLWSSPNRATTLDLTGSASKWTSGPFANQKPNFGAGLGLSHHFG
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Open questions

Is the alignment correct ?

Can | make it better ?

Which programs are best ?

How do you know if its correct ?
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Open questions

Is the alignment correct ?

Define correct! But at least there is software
available to assess the ‘stability’ of an
alignment, i.e. is the alighment the same
when | reverse the sequences.

Can | make it better ?

Define better!

Which programs are best ?

It depends...

How do you know if its correct ?

Structural information, Biology
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Heads or tails: a simple reliability check for multiple
sequence alignments.

>seql

GARFIELDTHELASTFATCAT

>seq?2

GARFIELDTHEFASTCAT

>seq3

GARFIELDTHEVERYFASTCAT

HEADS >seq4 TAIL

THEFATCAT
@USTAL 2.1 multiple \ ﬁLUSTAL 2.1 multiple
sequence alignment sequence alignment
seql GARFIELDTHELASTFAT-CAT seql TAC-TAFTSALEHTDLEIFRAG
seqd —-——————- THE----FAT-CAT <:> seq4 TAC-TAF----EHT-——————-—
seq2 GARFIELDTHE----FASTCAT seq2 TACTSAF----EHTDLEIFRAG
seq3 GARFIELDTHEVERYFASTCAT seq3 TACTSAFYREVEHTDLEIFRAG

\ %k * *%k e **y \ *k*k ok*k * %k *

In essence: Consider pairings of amino acids in alignment columns more reliable, if
they are observed both in the Heads and the Tails alignment.

63

Landan and Graur (2007) Heads or tails: a simple reliability check for multiple sequence alignments.



