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GENE EXPRESSION — THE FOUNDATION
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3 main questions

* What is expressed?
* When is it expressed?

In what amounts is it expressed?

Source: Orphanides et al. Cell VOLUME 108, ISSUE 4, P439-451,



TRANSCRIPTION — FROM DNA TO RNA

DNA ) o Nontemplate

YA/ NN NYNYNY, G/ N/ NN NN strand oo : ;
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is not usually transcribed.

e

b3 New nucleotides are added

to the 3’-OH group of the
growing RNA; so transcription
proceeds in a 5'—>3’direction.

RNA synthesis is complementary
and antiparallel to the template
strand.

\
Template strand

Figure 13-4
Genetics: A Conceptual Approach, Third Edition
© 2009 W.H. Freeman and Company

If we could measure the amount of RNA produced from a given gene,
we can determine its expression level



EARLY METHODS: MICROARRAYS DETECT TRANSCRIPTS
EXPLOITING THEIR HYBRIDIZATION TO COMPLEMENTARY
PROBE SETS
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(e.g. bind different genes)

Fully complementary Partially complementary
strands bind strongly strands bind weakly



EARLY METHODS: MICROARRAYS
WORKFLOW
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DIFFERENTIALLY LABELLED CDNAS HELP TO DETERMINE
DIFFERENTIAL GENE EXPRESSION ANALYSIS

Make cDNA reverse transcript
Label cDNAs with fluorescent dyes Advantages

1. fast

Principle of cDNA microarray
2. Intuitive

% % assay for gene expression
‘&g (after Gibson & Muse 2002)
Disadvantages
' 1. Difficult to quantify

2. Differences in probe

Red = "up-regulation” binding efficiacy
Green = "down-regulation” 3. Probe design not
Black = constitutive straightforward

expression 4. Cross-hybridization adds
noise

5. expenisve



ALTERNATIVE SPLICING
s ——— N

Exon1 |GU A

éQGU i °8§°U"AC! 8

A% 2\
Exon skipping/inclusion —l —{ H ]—

Alternative 3’ splice sites

\/
Alternative 5’ splice sites @
/\

Mutually exclusive exons
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Listening to silence and understanding nonsense: exonic
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Qutations that affect splicing. Cartegni et al. 2002

Nature Reviews | Genetiy
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Cell fate determination in human stem cells
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Gabut et al. (2011) Cell 147, 132-146 /




MICROARRAY APPLICATIONS —IT ALL
DEPENDS ON THE PROBE DESIGN

m Reciprocal behaviour of splice
| probe sets, specifically measuring

the inclusion or exclusion of AS

Exon-junction Exon-centric

Probe sets of different
conditions, specifically measuring
the occurrence of both samples




WHY BOTHER SEQUENCING RNAS?

Identification of genes

* Build new or improved profile of transcribed regions (“gene models”) of an uncharacterized
genome

* Rapid access to (protein-coding) genes without bothering with genome assembly and gene
prediction

Differential Gene Expression (DGE)

* Quantitative evaluation and comparison of transcript levels, usually between different groups

*  Vast majority of RNA-Seq is for DGE

Metatranscriptomics

* Transcriptome analysis of a community of different species (e.g., gut bacteria, hot springs, soil)

* Gain insights on the functioning and activity rather than just who is present

Study RNA-Protein interaction

* Gain insights into regulatory networks controlling gene expression
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THE END OF MICROARRAYS — RNA SEQUENCING

3 spliced exon  ©9P
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Alternatively
spliced exon

Total RNA, total RNA minus rANA, poly(A)-selected RNA
Geno expression profiling

Long noncoding RNA profiling

and trans profiling

Alternative polyadenylation profiling

Mapping transcription initiation sites

Mapping RNA editing sites (coupled with DNA-Seq)

| Targeted RNA-Seq, Direct RNA-Seq, Strand-specific
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AT A GIVEN TIME IN A CELL, WE FIND A GENE'S
TRANSCRIPTS IN ALL POSSIBLE STAGES OF ITS LIFE'
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modified from
1 this becomes relevant for the interpretation of RNA seq data McKee and Silver, Cell Res. 2007



FIRST STEPS IN RNASEQ — EST' SEQUENCING

(1) GenomicDNA template
— - O

‘ Transcription

(2) NascentRNA |
—EE-1 80—

splicing Partial /Imperfectsplicing
(3) mRNA ¢ 4 (4) ImperfectmRNA
— N ..

Reverse Transcripta_srev il
(5) cDNA Library Y€ (6) sest
AAAAAA : -~ AAAAAA
FEST

cDNA end sequencing

(7) Large collection of ESTs ’
-—>

(8) (a) Multi-member sequence assembly

Transcription of Genomic DNA:

Genomic DNA is first transcribed to generate Nascent
mRNA followed by splicing of synthesize perfect mRNA.
Reverse transcription of mRNA:

mRNA can also be directly isolated from the species by
using different kits (e.g. RNAgent Promega). mRNA
synthesized undergoes reverse transcription to form
cDNA library.

Generation of ESTs:

From the cDNA library 5' or 3'-ESTs are generated by
cDNA end sequencing. 5' EST is formed from a region
of transcript which forms protein whereas the ending
portion of cDNA forms 3'EST.

Assembly and organization of ESTs:

i PR —b X The constructed ESTs can then be assembled separately
(b)Bridged sequence assembly ) assembly i H H i
e in multimember sequence assembly, Bridged sequence
(c)Small dusters & singetons =="Rp assembly and small clusters on the basis of size of ESTs.
. http://nptel.ac.in/courses/102103017/module33/lec33_slide2.htm

1 Expressed sequence tags



BEYOND EST SEQUENCING — THE QUEST FOR THE FULL
TRANSCRIPT TO BROADEN THE SCOPE OF ANALYSES (E.G.
ALTERNATIVE SPLICING)

(oo oo ] ot | wos | (o o] s | e | mRNA

AAAAAAAAAA

* once: Cloning and sequencing of long cDNA-fragments (300 — 400 nt)

* Now: shotgun RNA sequencing and asseembly

* Even newer: PacBio Iso-Seq — single molecule sequencing of full RNAs

* Analysis: mapping to reference genome, e.g. with BLAT (Blast like alignment tool) or with
splice-site aware mappers, e.g. GMAP

1 Kent (2002) Genome Res. 12: 656-664 2 Wu and Watanabe (2005) Bioinformatics 21:1859-1875



THE GENEREAL WORKFLOW OF RNASEQ

ORF
mMRNA Coding sequence =
| Exonic reads
é N —
—————] — — | e
o S poly(A) end reads
e
— = e == =" Mapped sequence reads
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ATCACAGTGGGACTCCATAAATTTTTCT = Nucleotide position

CGAAGGACCAGCAGAAACGAGAGENNNNY Short sequence reads — —
GGACAGAGTCCCCAGCGGGCTGAAGGGG
ATGAAACATTAAAGTCAAACAATATGAA

Wang et al. 2009 Nat Rev Genet. 10(1): 57-63



FROM RNA TO SEQUENCE DATA

a Data generation

(D) mRNA or total RNA

e | =
r— 1 L 1
|

e

Remove rRNA?
Select mRNA?

(3 Fragment RNA
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Martin J.A. and Wang Z., Nat. Rev. Genet. (2011) 12:671-682
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DIFFERENT WAYS TO CREATE RNASEQ LIBRARIES

* Library preparation Kkits:
— standard Illumina Tru-seq kit (small RNA or mRNA)
— average insert size of about 200 bp

* Regular libraries:

— prokaryotes: rRNA depletion or synthetic A-tailing
purification

— eukaryotes: Poly-A purification or rRNA depletion

* Normalized libraries (single cell sequencing, low abundant RNAs):
— double strand nuclease normalization:
* denature double-stranded RNAs
* re-hybridization
* cleavage with double strand-specific nuclease -> abundant RNAs are more likely to re-
hybridize



RNASEQ LIBRARIES ARE OFTEN ,STRANDED'

RNA after rRNA depletion b SN . TS o TS sann WERE W

RNA fragmentation
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, R R W
E lllumina RNA ligation method i E dUTP method g ; RT method i S‘I‘rqnded |ib|‘qrie$ are for exqmple
: { o 5 , '
: : i ! ! Random primer RT ] ! Tagaged rand : . .
| S ' i ' L | prmerRT ' . relevant for the detection of anti-sense
' i i <“—NNNNN i i <—NNNN i . .
. o | o "S ' transcripts, which often have regulatory
. 5' adapter ligation i i l i i l i functions
i e : b i
E | © dUTP incorporation l ! E |
E l i i A — o —_ | i Tagged random primer i
| ! ! ) ' for 2nd strand sythesisl E
E p— 4__- i i Y-shape adapter ligation i i E \NNNNN_> !
: o - P :
o | - i | :
E ——_- i ; dUTP strand degradationi ; E i
| pen | L i | i
? = e | | PeW | - -
e e=_J = u =
R e L
: - | : e : I e i
H s —— ] i i [ ! ! :



FROM RNA TO SEQUENCE DATA

(@) Reverse transcribe l

into cDNA
e EEsseei
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l PCR amplification?
(6 Select arange of sizes
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> (@ Sequence cDNA ends

Martin J.A. and Wang Z., Nat. Rev. Genet. (2011) 12:671-682



RNA-SEQ - EXPERIMENTAL AND PRACTICAL CONSIDERATIONS

Single-end (SE) or Paired end (PE)?

< SE is most common for DGE analysis

<> PE is best for assemblies, for isoform differentiation, and for
paralogous & orthologous gene differentiation (i.e. high-ploidy

genomes & metatransciptomes)

Single-end read

q Read1

ATGTTCCATAAGC...

—

Paired-end reads

Read1
ATGTTCCATAAGC...
Read2
CCGTAATGGCATG...




IRRESPECTIVE OF WHAT YOU DO: RNA QUALITY IS
CRUCIAL!

Take home message

Garbage in garbage out...

Thus, make sure you start your analysis with high quality RNA...

But how to assess extraction quality, if gene length, and thus transcript length is not uniform?



RNA EXTRACTION — RIBOSOMAL RNAS HELP TO
DETERMINE RNA QUALITY
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The idea
18S rRNA * rRNA is the most abundant RNA species in a cell
ERERS * The two large rRNAs, 18S and 28S, form two
prominent peaks in a size separation of total RNA
on a gel
* The more smear on a gel, the more the two rRNAs
(but also the other RNA molecules) are degrated

200 nt
1 1,000 nt
2,000nt] | 4,06 B
/ Ladder 2S0ng...Hela3...Helal...Hela2...Hela4...Hela6...Hela5...Hela 1... Hela 1... Hela 2., Hela 2... 250 ng...
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The application

Checking RNA integrity by using the two
large rRNAs, 18S and 28S, as marker
Categorization to RIN factors

RINT1O — perfect quality; RINT — fully

degrated
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Time (s)
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RNA EXTRACTION — QUALITY CHECKING
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TWO FLAVORS OF RNASEQ ASSEMBLY: REFERENCE BASED
AND DE-NOVO...OR GAPPED VS. UNGAPPED ANALYSIS

RNA-Seq reads

= e R =
N o2 = =
(o e R o = == ]
e g =20 ‘:’:‘]:] =g — =
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Reference based assembly - Align reads to Assemble transcripts

genome de novo
RNA seq reads are mapped
against the corresponding o I ==

=] [rem—
genomic position. In a e e .. Ll — ———
0O 0O0—0 Oooe— = o0
perfect world, reads map E = o—IOEE O
only to exonic regions and 000 S ——
Spl”' redds idenﬁf)’ exon- Assemble transcripts Align transcripts
. . from spliced alignments to genome
intfron boundaries. Thus,
splice-aware ma ers dare
P PP ] More abundant ChE——a ]

reqU|red CE—_L_um— ]

(= =] Less abundant

Haas and Zody (2010) Nature Biotechnology 28, 421-423

De-novo assembly —
Overlapping sequence reads
with sufficient sequence
similarity are collapsed into
longer sequences (aka
contigs). The contigs serve as
reconstructions of the original
transcript. The assembly of
RNA seq reads does not
require the consideration of
gaps due to exon-intron-
boundaries

23



ASSUMING THAT WE CAN PERFECTLY MAP, WHAT DO READ
COUNTS TO A GENE/TRANSCRIPT TELL US ABOUT EXPRESSION
LEVEL'?

We can, in principle, directly compare expression of a gene between
different replicates and/or experimental conditions:
- - — . — e [ —]

library size & differences in sample pools DO 0—O oo
o OO0 O —O o

experimental biases introduced at any stage ] — e | e e | e
= 02— D B e
] 0O O—oOOoE o—o o s

We have to solve the following problems {G m——
eno

longer mRNAs = sampled more frequently
different sequences may be preferentially enriched during the sample
preparation

Difficulties to keep genuine biological RNA abundance:
small subsets of the total dataset = overfitting

expression between samples =2 significant differences

1 Transcript abundance



COMPARISON OF NORMALIZATION METHODS

A comprehensive evaluation of normalization
methods for Illumina high-throughput RNA
sequencing data analysis &

Marie-Agneés Dillies ™, Andrea Rau ™%, Julie Aubert ¥, Christelle Hennequet-Antier &%,
Marine Jeanmougin & Nicolas Servant &, Céline Keime &, Guillemette Marot,
David Castel, Jordi Estelle ... Show more

Author Notes

Briefings in Bioinformatics, Volume 14, Issue 6, November 2013, Pages 671-683,
https://doi.org/10.1093/bib/bbs046
Published: 15 September2012 Article history v



COMPARISON OF NORMALIZATION METHODS %

* Definitions

* Sequencing technology: lllumina sequencing machines, data sets differ in their read length and overall
throughput but share the same sequencing technology (flow cell).

* Aflow cell is made up of eight independent sequencing areas, or ‘lanes’.

* Alibrary contains cDNAs representative of the RNA molecules that are extracted from a given culture
or tissue

* Libraries are deposited on these lanes in order to be sequenced.

e Similarly to microarrays, the library composition reflects the RNA repertoire expressed in the
corresponding culture or tissue.

* ‘library size’ refers to the number of mapped short reads obtained from the sequencing process of the
library.

* In this study (Dillies et al. 2013), a single library was sequenced in each lane.



RNA-SEQ NORMALIZATION METHODS (A SELECTION)

Because the most obvious source of variation between lanes is the differences in library size
(i.e. sequencing depth), the simplest form of inter-sample normalization is achieved by
scaling raw read counts in each lane by a single lane-specific factor reflecting its library size.

Total count (TC)

Gene counts are divided by the total number of mapped reads (or library size) associated with their
lane and multiplied by the mean total count across all the samples of the dataset

Upper Quartile (UQ)

Like TC but total counts are replaced by the upper quartile of counts different from O

Median (Med)

Like TC but total counts are replaced by the median counts different from O

See Dillies et al. https://doi.org/10.1093 /bib/bbs046 for further information




RNA-SEQ NORMALIZATION METHODS (A SELECTION)

Quantile (Q)

normalization method consists in matching distributions of gene counts across lanes

RPKM

re-scales gene counts to correct for differences in both library sizes and gene length

DESeq
DESeq scaling factor for a given lane is computed as the median of the ratio, for each gene, of
its read count over its geometric mean across all lanes. The underlying idea is that non-DE
genes should have similar read counts across samples, leading to a ratio of 1



‘ IMPORTANT RNA-SEQ NORMALIZATION

Normalization Method

RPM (Reads Per_Million)

Tarazona et al. 2011
1. Includes library size normalization

TPM (Transcripts Per Million)
Wagner et al. 2012

1. Average length of transcripts + library size

DESeq/DESeq2

1. Included in the DESeq Bioconductor Anders & Huber 2010

package (version 1.6.0)



COMPARISON OF NORMALIZATION METHODS

Variation in expression among a set of g S -
30 housekeeping genes in the human g
o 8 —
data, which may be assumed to be 5°
2
similarly expressed across samples. 5§
Q&
o o _J |
ER=

TC uQ Med DESeq TMM Q RPKM  RawCount

in typical DE analyses the majority of 20 - T

genes under consideration are assumed  § ; s oy ATIR o VIIT v TTV0 maTiie it T
to be non-differentially expressed ke v ¢ jTarin T :E TT:' i r :.': :’TTI:
between conditions. For this reason, it is s 131 SiHU BHITHEBHHHHIERTE B :,:EI,
useful to examine boxplots of counts across 2 i ¢ GldEebd BRaiad Drinbis LRLIEL) ol L
samples in each dataset, both before and g 5. B H | H "I Hﬂr H I
after normalization; an effective B H ] MI UEERE (I ; H
normalization scheme should result in a k= TC - = LDLESeq S ;MM T l(-;——L ' LRLpKM ’ LRLa;chntl

stabilization of read count distributions

across replicates. Marie-Agnés Dillies et al. Brief Bioinform 2012;bib.bbs046



COMING BACK TO THE MAPPING PROBLEM — TWO MAIN

FLAVORS OF RNASEQ MAPPING — GAPPED VS UNGAP

-

K-mer indexed SailFish

transcriptome

RSEM, eXpress

BitSeq

EBSeq, DESeq

I TR |

Un-gapped
alignment to

transcriptome Transcriptome

reconstruction
Gapped

alignment to

DSGseq
DiffSplice *
DEXSeq
SplicingCompass *

Transcript
quantification

genome

Cufflinks/RABT *

Isoform
DE

Exon DE

* novel discovery
B favorite
I didn’t test to completion

\

PED




MAPPING RNASEQ TO A GENOME — WHERE ARE THE
ISSUES?/

Incorrect mapping (non-gapped alignment)
el GTXX AG|GTXX e2

Correct mapping (spliced alignment)

(1) Read r may be incorrectly mapped to the intron between exons el and e2.

el

e2

e3 Gene

Read
mapped

el e2 e3

Processed pseudogene

(2) Here, the read shown in red, which spans a splice junction, can be aligned

end-to-end to a processed pseudogene.
B Read

[ Exon
"\ Intron

\ Kim et al. (2013) Genome Biology




SPLICE AWARE ALIGNMENTS

RNA-Seq reads

= = 3 —| ]
—

Align reads to
genome
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Genome

Splice-aware alignment algorithms

TopHat1 /2!
HiSat2
SpliceMap?
GSNAP3
STAR*

1 Wang et al. (2008) Nature 456: 470-6; 3 Robertson et al. (2010) Nat Methods 7: 909-12.
2 Wu and Nacu (2010) Bioinformatics 26: 873-81. 4 Dobin et al. (2013) Bioinformatics 29: 15-21.



THE TASK — SPLICE-AWARE MAPPING OF RNASEQ

READS

(1) Transcriptome alignment (optional)

e — 77— — —— —
— [ — —s e ysew
I | | I Un;r;a-p_p-e_d-r-e’ads I l | |
. b
(2) Genome alignment N

Multi-exon spanning reads

Reads spanning a single exon are mapped
are unmapped

— -— T
_— _— " — —
ﬂ
(3) Spliced alignment L4

* known junction signals (GT-AG, GC-AG, and AT-AC)

* Re-map due to edit distance

* split into smaller non-overlapping segments (25 bp)

* left and right segments of the same read are
mapped

* within a user-defined maximum intron size

Read are aligned against transcriptome.

| Readsare aligned against genome.

Transcriptome index

Genome index




SPLICE-AWARE ALIGNMENT | - TOPHAT

Map reads to whole
= genome with Bowtie

1. Genomic alignment via
\V Bowtie

l.

if
ﬂ

—_

"||le|||||1|
'.?

Ll
i

Collect initially
unmappable reads

Assemble
consensus of
covered regions

2. ‘Islands of reads’ show

probable Exonic regions
T, Generate possible
il splices between
neighboring
exons

Y
Build seed table

e 3. Connection of exons via

unmappable reads

spliced reads using seed-
/ and-extend strategy

Map reads to possible
splices via seed-and-

Wang et al. (2008) Nature 456: 470-6
extend

gt ag ag



SPLICE-AWARE ALIGNMENT — TOPHAT2 ALIGNMENTS
OF READS

/

Readsare split _—
into segments

(3-1) Segmentalignment to genome

(3-2) Identification of splice sites
(including indels and fusion break points)

(3-3) Segments aligned to junction
flanking sequences

(3-4) Segmentalignments stitched
togetherto form whole read alignments

(3-5) Re-alignment of reads minimally
overlapping introns

i | ¢ Unmapped segment

\ |
\

Segment mappings are used to find p;tential splice sites
usually when the distance between the mapped positions
of the left and the right segments are longer than the

Reads are split into smaller segments

11
b

which are then aligned to the genome.

Genome index

;

h 4

length of the middle part of a read.

J
o

Sequences flanking a splice site are concatenated

and segments are aligned to them.

Mapped segments against either genome or flanking
sequences are gathered to produce whole read alignments.

Junction flanking index

., e

Genome mapped reads with alignments extendinga few
basesinto introns are re-aligned to exonsinstead.

v

N

[ exonsfrom znnotated transcripts
B Unannotated exons(novel transcripts)

Il Intron orintergenic region




SPLICE-AWARE ALIGNMENT 11 - STAR

Map Map again
d
MMP1 } MMP2 (a)

RNA-seq read

- e e aw o JL--

exons in the genome

Map (b) Map (c)
MMP 1 Extend _ MMP 1 Trim

iR [ s

mismatches A-tail, or adapter,

Dobin et al. (201 3) Bioinformatics 29: 15-21

a) Maximum Mappable Prefix

1. Look for the longest substring of a
read that can be continuously aligned
fo a genome

2. Repeat with the remaining part of the
read

b) Connect all seeds that could be
placed in a genome via an extend step

c) Trim terminal poorly mapping regions



HISAT2

-

Graph-based genome alignment and genotyping
with HISAT2 and HISAT-genotype

Daehwan Kim®™, Joseph M. Paggi?, Chanhee Park’, Christopher Bennett©®'and
Steven L. Salzberg @34

The human reference genome represents only a small number of individuals, which limits its usefulness for genotyping.
We present a method named HISAT2 (hierarchical indexing for spliced alignment of transcripts 2) that can align both DNA
and RNA sequences using a graph Ferragina Manzini index. We use HISAT2 to represent and search an expanded model of the
human reference genome in which over 14.5 million genomic variants in combination with haplotypes are incorporated into the
data structure used for searching and alighment. We benchmark HISAT2 using simulated and real datasets to demonstrate
that our strategy of representing a population of genomes, together with a fast, memory-efficient search algorithm, provides
more detailed and accurate variant analyses than other methods. We apply HISAT2 for HLA typing and DNA fingerprinting;
both applications form part of the HISAT-genotype software that enables analysis of haplotype-resolved genes or genomic
regions. HISAT-genotype outperforms other computational methods and matches or exceeds the performance of laboratory-
based assays.

~




HISAT2 - INDEXING

1. Reference sequence (6 bp long)

\

2. Graphical representation (original graph)

O—®—© ‘-p . ()
8 "

Prefix doubling and pruning ‘

3. Prefix-sorted graph

4. Tabular representation of
the prefix-sorted graph
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HISAT2 — WORKING WITH DIFFERENT INDICES:
GLOBAL, LOCAL & REPEAT

1. HFGM 2. Repeat index
Global index Local indexes
————————— : e .
/ \ GFM index FM index
for chr. 1 from 1 to 57,000 for repeat sequences
Reads
GFM index i
=== . Reads potentially mapped
_ﬁ Alignment for chr. 1 from 56,000 to W to >5 locations Minimizer table
[ — . 113,000 for repeat sequences
I ————— GFM index
— for the entire human genome GFM index
and ~12.3 million SNPs for chr. 1 from 112,000 to
e 169,000 ~55,000
e L TS — *:
indexes
GFM index " s i
\ for chr. Y from 1 to 57,000 4. Alignment information
= (expanded when needed)
Read 1 Chromosome 10 76,822,302
X Read 2 Chromosome 17 69,091,764
Reads mapped to <5 locations
Read 3 Chromosome 4 122,942,920
Read 3 Chromosome 4 123,001,589
3. A|ignment information - Read 3 Chromosome 4 127,862,299
Read 3 Chromosome 9 89,130,544
repeat -
> Read 4 Chromosome 1 102,931,088
Hoad 1 . | | Expanding repeat alignments Read 4 Chromosome 2 105,208,801
ia APIs (C++, Pyth d J
Read 2 Chromosome 17 69,091,764 via APIs (C++, Python and Java) T Chromosomaa 174,262,680
Read 3 Repeat 14,916,723 - Read 4 Chromosome 4 15,844,480
Read 4 Repeat 1,780,959
Read 4 Chromosome X 69,679,816
Read 4 Chromosome Y 22,342,611




THE GENERAL IDEA OF HISAT2

Chr 22 -

24,447,287
B Read 4~ Global Search
Exon 4= |ocal Search

B Intron 4= Extension

e2

24,447,436 24,451,336

(1) I BN 2)

24,451,622

el

e2

)

Global Search: a global FM index that represents the entire genome

Local Search: numerous small FM indexes for regions that collectively cover the genome, where each index

represents 57,000 bp



SPLICE-AWARE ALIGNMENT — HISAT2 ALIGNMENT

E Bl 1. reads that map within an exon
I
—
2 Bl 2. .. acrosstwo exons with 8-15 bp
mismatch ——— S .
— mapping to one exon

N Bl 3 gcross two exons with at least 15

24,447,287 B | 24,451,622
N — bp in each exon

- mm () itis at least 28 bp long and (b) it maps onto exactly one location
-
—



HISAT RUNS IN TWO PHASES

15t run of HISAT to discover splice sites

- ==
< — mapped
-
L e =
[ ] el
r |
| - N — - unmapped
- B t 1 |

m -
booooemmoeooes E—
L Gem—
M Read 4= Global Search [ .- =
<+ — PR
Exon 4= Local Search
M Intron 4= Extension

4= Junction extension

Phase 1 requires a sufficient

coverage to detect splice junctions /
splice sites

Phase 2 makes use of splice sites to

map reads only barely overlapping
an exon



4= Global Search
4= Local Search
4= Extension

SPLICE-AWARE ALIGNMENT — HISAT2 HANDLING 4= sncson xesn
PSEUDOGENES

chr1 e2 [ ]
\ pa— (i) Mapping of both locations long
base difference enough for partial mapping
—
\ )
chr1 2 [ ]
B —
- - (ii) One locationby local indexing, the other
M—— by extension with one mismatch




4= Global Search
4= Local Search
4= Extension

SPLICE-AWARE ALIGNMENT — HISAT2 ERRORS IN READS ™

(1)

-

mismatch —

PP E——
c Ul L

(3)

I

— N
mismatch indel
~ Pl
| ) -
el 82 e3
i3 [ ——]
L Y.
] (2)
B - % ]
— |
- ——
3 2y,
e3 [ ] e
e
__________ a Gap closure




AFTER MAPPING COMES TRANSCRIPT RECONSTRUCTION

RNA-Seq reads

= s R (—] (=
. 02 = F
= = l:l:l:)l: = - =
=
m g =2 amao
=
= = Nl oo ==
Align reads to
genome
(- o[ — . — e
oo o—o = =
= —O OO0 O —o /|
- | i e o I i oy s et [ s

O O0——AO OOOoOc— =/
=l E O s —a s

Assemble transcripts
from spliced alignments

[T e ] ] More abundant
—l—{ ]
=" ] Less abundant

J




TRANSCRIPT RECONSTRUCTION

Assembly

Mutually
incompatible
fragments

Minimum path cover

\

Transcripts

Cufflinks': minimal set of
compatible isoforms (maximum
precision)

Scripture?: all isoforms that are
compatible with the read data
(maximum sensitivity)

MISO3: estimate expression of
alternatively spliced exons and
isoforms

1 Trapnell et al. (2010) Nat Biotechnol 28: 511-15
2  Guttman et al. (2010) Nat Biotechnol 28: 503-10
3 Katz et al. (2010) Nat Methods 7: 1009-15



CUFFLINKS FOLLOWS TOPHAT

Map paired cDNA
fragment sequences
to genome

g >

—— == Spliced fragment
] =3 a—am .
o alignments
- . —.Ea
Do e o -

L g Iy R S S e —

J

Trapnell et al. (2010) Nat Biotechnol 28: 511-15




CUFFLINKS — DEFINE POSSIBILE TRANSCRIPTS

2 - & ——-o—aa

Ty
[~

[=] —
[ =] oo S0
eoac oo cooc oo o 86
ec0Coty oo OO
- O ) S |

1. With paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as a
single alignment. The algorithm assembles overlapping ‘bundles’ of fragment
alignments

2. Every fragment is consistent with at least one assembled transcript

Every transcript is tiled by reads

w

4. The number of transcripts is the smallest required to satisfy requirement 1

Bundle: Set of overlapping fragments representing splice variants of only one or few genes



CUFFLINKS — TRANSCRIPT ASSEMBLY
- p

e directed acyclic graph (DAG):

* with one node for each fragment

* Each fragment—>aligned pair of mated reads
* Fragment (paired-end) alignments are of two types:

* those where reads align in their entirety to the genome

* reads which have a split alighment (due to an implied intron)
* Single reads checking for compatibility:

* Two reads are compatible if their overlap contains the exact

\_ * same implied introns (or none) Yy,

Trapnell et al. (2010) Nat Biotechnol 28: 511-15



CUFFLINKS — TRANSCRIPT ASSEMBLY CASES

4 , )

1 —  Compatible
%) <o e, * Incompatible
—ya— ................. —_— - ° Nested
DR R * Uncertainty of x4
Y — T — * Y4 & y5 incompatible
y5__.__.f.'_'.'.'_'.'fffff;"_':_ " """""" -




CUFFLINKS — CREATE GRAPH OF PUTATIVE TRANSCRIPTS

-

Overlap graph

Mutually
incompatible
fragments

\

Within a ,bundle¢

Identify pairs of ‘incompatible’ fragments that
must have originated from distinct spliced
mRNA isoforms. Fragments are connected in
an ‘overlap graph’ when they are compatible
and their alignments overlap in the genome.
Each fragment has one node in the graph, and
an edge, directed from left to right along the
genome, is placed between each pair of
compatible fragments.

Example:

yellow, blue, and red fragments must have
originated from separate isoforms, but any
other fragment could have come from the
same transcript as one of these three

Bundle: Set of overlapping fragments representing splice variants of only one or few genes



CUFFLINKS — DEFINE POSSIBILE PATH WITHIN THE

GRAPH

Minimum path cover

Minimal Path coverage to determine
number of alternative transcripts

The overlap graph here can be minimally
‘covered’ by three paths, each representing
a different isoform. Dilworth's Theorem
states that the number of mutually
incompatible reads is the same as the
minimum number of transcripts needed to
“explain” all the fragments.



CUFFLINKS - TRANSCRIPT ABUNDANCE AND

PROBABILITY

Abundance estimation

——— Fragment

Transcript coverage length
and compatibility distribution

4 )

. A

Fragments are matched (denoted here using color) to the
transcripts from which they could have originated. The violet
fragment could have originated from the blue or red isoform.
Gray fragments could have come from any of the three shown.



CUFFLINKS - TRANSCRIPT ABUNDANCE AND
PROBABILITY N

Abundance estimation abundances

i Log-likelihood
- A

Fragment

- o
— oo
o= oDoo oSS
(=} g oa &0
et = T
a
1

Transcript coverage length
and compatibility distribution

Cufflinks estimates transcript abundances using a statistical model in which the probability of observing each
fragment is a linear function of the abundances of the transcripts from which it could have originated.

Because only the ends of each fragment are sequenced, the length of each may be unknown. Assigning a fragment
to different isoforms often implies a different length for it. Cufflinks can incorporate the distribution of fragment
lengths to help assign fragments to isoforms. For example, the violet fragment would be much longer, and very
improbable according to Cufflinks' model, if it were to come from the red isoform instead of the blue isoform.



CUFFLINKS - TRANSCRIPT ABUNDANCE AND

PROBABILITY

Abundance estimation

i

o 3:
2ol

| o

I———— Fragment
Transcript coverage length

and compatibility distribution

and their
abundances

v
—1 = Transcripts
== —

Maximum likelihood
abundances

Log-likelihood

A

¥sThe program then numerically maximizes a function
that assigns a likelihood to all possible sets of relative
abundances of the yellow, red and blue isoforms

(y1,vy2,¥3), producing the abundances that best explain
the observed fragments, shown as a pie chart.



THE WORKFLOW OF TRANSCRIPT RECONSTRUCTION
FROM ASSEMBLED READS
/ Cufflinks version >=2.2.0 \

(optional) Cufflinks = Workflow
Condition A Condition B
TopHat / HISAT:
‘;/P S Splice-aware aligner for read mapping

Mapped
eads

= | Cufflinks:
/W\ Assemble transcripts from spliced reads

Trarectots e | Cuffmerge:
\f Assembled transcriptomes are used for
a master transcriptome
Y Cuffquant:
.ol Quantifying the transcript expression as

profiles

Mapped i Mapped
Reads RAeods
Trapnell et al. (2010) Nat Biotechnol 28: 511-15
\ \ http://cole-trapnell-lab.github.io/cufflinks/manual/ /




