
RNA SEQ ANALYSIS Algorithms in Sequence Analysis



GENE EXPRESSION – THE FOUNDATION

3 main questions

• What is expressed?

• When is it expressed?

• In what amounts is it expressed?

Source:  Orphanides et al. Cell VOLUME 108, ISSUE 4, P439-451, 



TRANSCRIPTION – FROM DNA TO RNA

If we could measure the amount of RNA produced from a given gene, 
we can determine its expression level



EARLY METHODS: MICROARRAYS DETECT TRANSCRIPTS 
EXPLOITING THEIR HYBRIDIZATION TO COMPLEMENTARY 
PROBE SETS



EARLY METHODS: MICROARRAYS 
WORKFLOW



DIFFERENTIALLY LABELLED CDNAS HELP TO DETERMINE
DIFFERENTIAL GENE EXPRESSION ANALYSIS

Advantages
1. fast
2. Intuitive

Disadvantages
1. Difficult to quantify
2. Differences in probe 

binding efficiacy
3. Probe design not 

straightforward
4. Cross-hybridization adds

noise
5. expenisve



ALTERNATIVE SPLICING Cell fate determination in human stem cells



Reciprocal behaviour of splice 
probe sets, specifically measuring 
the inclusion or exclusion of AS

Probe sets of different 
conditions, specifically measuring 
the occurrence of both samples

MICROARRAY APPLICATIONS – IT ALL 
DEPENDS ON THE PROBE DESIGN



• Identification of genes

• Build new or improved profile of transcribed regions (“gene models”) of an uncharacterized 
genome

• Rapid access to (protein-coding) genes without bothering with genome assembly and gene 
prediction

• Differential Gene Expression (DGE)

• Quantitative evaluation and comparison of transcript levels, usually between different groups
• Vast majority of RNA-Seq is for DGE

• Metatranscriptomics

• Transcriptome analysis of a community of different species (e.g., gut bacteria, hot springs, soil)
• Gain insights on the functioning and activity rather than just who is present

• Study RNA-Protein interaction

• Gain insights into regulatory networks controlling gene expression

WHY BOTHER SEQUENCING RNAS?
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THE END OF MICROARRAYS – RNA SEQUENCING



AT A GIVEN TIME IN A CELL, WE FIND A GENE‘S
TRANSCRIPTS IN ALL POSSIBLE STAGES OF ITS LIFE1

1 this becomes relevant for the interpretation of RNA seq data 



FIRST STEPS IN RNASEQ – EST1 SEQUENCING

1 Expressed sequence tags

Transcription of Genomic DNA: 
Genomic DNA is first transcribed to generate Nascent
mRNA followed by splicing of synthesize perfect mRNA.
Reverse transcription of mRNA:
mRNA can also be directly isolated from the species by
using different kits (e.g. RNAgent Promega). mRNA
synthesized undergoes reverse transcription to form 
cDNA library. 
Generation of ESTs: 
From the cDNA library 5' or 3'-ESTs are generated by
cDNA end sequencing. 5' EST is formed from a region
of transcript which forms protein whereas the ending
portion of cDNA forms 3'EST.
Assembly and organization of ESTs: 
The constructed ESTs can then be assembled separately
in multimember sequence assembly, Bridged sequence
assembly and small clusters on the basis of size of ESTs. 



BEYOND EST SEQUENCING – THE QUEST FOR THE FULL
TRANSCRIPT TO BROADEN THE SCOPE OF ANALYSES (E.G. 
ALTERNATIVE SPLICING)

• once: Cloning and sequencing of long cDNA-fragments (300 – 400 nt)
• Now: shotgun RNA sequencing and asseembly
• Even newer: PacBio Iso-Seq – single molecule sequencing of full RNAs
• Analysis: mapping to reference genome, e.g. with BLAT (Blast like alignment tool) or with

splice-site aware mappers, e.g. GMAP

1 Kent (2002) Genome Res. 12: 656-664 2 Wu and Watanabe (2005) Bioinformatics 21:1859-1875



THE GENEREAL WORKFLOW OF RNASEQ

Wang et al. 2009 Nat Rev Genet. 10(1): 57–63 14



Martin J.A. and Wang Z., Nat. Rev. Genet. (2011) 12:671–682

FROM RNA TO SEQUENCE DATA
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DIFFERENT WAYS TO CREATE RNASEQ LIBRARIES

• Library preparation kits:
– standard Illumina Tru-seq kit (small RNA or mRNA) 
– average insert size of about 200 bp

• Regular libraries:
– prokaryotes: rRNA depletion or synthetic A-tailing
purification
– eukaryotes: Poly-A purification or rRNA depletion

• Normalized libraries (single cell sequencing, low abundant RNAs): 
– double strand nuclease normalization: 

* denature double-stranded RNAs
* re-hybridization
* cleavage with double strand-specific nuclease -> abundant RNAs are more likely to re-
hybridize



RNASEQ LIBRARIES ARE OFTEN ‚STRANDED‘

Stranded libraries are, for example, 
relevant for the detection of anti-sense 
transcripts, which often have regulatory
functions



Martin J.A. and Wang Z., Nat. Rev. Genet. (2011) 12:671–682

FROM RNA TO SEQUENCE DATA
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Paired-end reads
Read1

Read2

Single-end read
Read1

Single-end (SE) or Paired end (PE)?
² SE is most common for DGE analysis

² PE is best for assemblies, for isoform differentiation, and for 
paralogous & orthologous gene differentiation (i.e. high-ploidy 
genomes & metatransciptomes)

RNA-SEQ - EXPERIMENTAL AND PRACTICAL CONSIDERATIONS
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IRRESPECTIVE OF WHAT YOU DO: RNA QUALITY IS
CRUCIAL!

Take home message

Garbage in garbage out…

Thus, make sure you start your analysis with high quality RNA…

But how to assess extraction quality, if gene length, and thus transcript length is not uniform?



RNA EXTRACTION – RIBOSOMAL RNAS HELP TO
DETERMINE RNA QUALITY

The application
• Checking RNA integrity by using the two

large rRNAs, 18S and 28S, as marker
• Categorization to RIN factors
• RIN10 – perfect quality; RIN1 – fully

degrated

The idea
• rRNA is the most abundant RNA species in a cell
• The two large rRNAs, 18S and 28S, form two

prominent peaks in a size separation of total RNA 
on a gel

• The more smear on a gel, the more the two rRNAs
(but also the other RNA molecules) are degrated



RNA EXTRACTION – QUALITY CHECKING



TWO FLAVORS OF RNASEQ ASSEMBLY: REFERENCE BASED
AND DE-NOVO…OR GAPPED VS. UNGAPPED ANALYSIS

Haas and Zody (2010) Nature Biotechnology 28, 421–423 

Reference based assembly -
RNA seq reads are mapped
against the corresponding
genomic position. In a 
perfect world, reads map
only to exonic regions and
split reads identify exon-
intron boundaries. Thus, 
splice-aware mappers are
required

De-novo assembly –
Overlapping sequence reads
with sufficient sequence
similarity are collapsed into
longer sequences (aka 
contigs). The contigs serve as
reconstructions of the original 
transcript. The assembly of
RNA seq reads does not 
require the consideration of
gaps due to exon-intron-
boundaries
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ASSUMING THAT WE CAN PERFECTLY MAP, WHAT DO READ
COUNTS TO A GENE/TRANSCRIPT TELL US ABOUT EXPRESSION
LEVEL1?

1 Transcript abundance

We can, in principle, directly compare expression of a gene between
different replicates and/or experimental conditions:
­ library size & differences in sample pools
­ experimental biases introduced at any stage 

We have to solve the following problems
­ longer mRNAs à sampled more frequently
­ different sequences may be preferentially enriched during the sample 
preparation

Difficulties to keep genuine biological RNA abundance:
­ small subsets of the total dataset à overfitting
­ expression between samples à significant differences



COMPARISON OF NORMALIZATION METHODS



COMPARISON OF NORMALIZATION METHODS

• Definitions
• Sequencing technology: Illumina sequencing machines, data sets differ in their read length and overall

throughput but share the same sequencing technology (flow cell).
• A flow cell is made up of eight independent sequencing areas, or ‘lanes’. 

• A library contains cDNAs representative of the RNA molecules that are extracted from a given culture
or tissue

• Libraries are deposited on these lanes in order to be sequenced.

• Similarly to microarrays, the library composition reflects the RNA repertoire expressed in the
corresponding culture or tissue. 

• ‘library size’ refers to the number of mapped short reads obtained from the sequencing process of the
library. 

• In this study (Dillies et al. 2013), a single library was sequenced in each lane.



RNA-SEQ NORMALIZATION METHODS (A SELECTION)

Total count (TC)
Gene counts are divided by the total number of mapped reads (or library size) associated with their
lane and multiplied by the mean total count across all the samples of the dataset

Upper Quartile (UQ)
Like TC but total counts are replaced by the upper quartile of counts different from 0

Median (Med)
Like TC but total counts are replaced by the median counts different from 0

See Dillies et al. https://doi.org/10.1093/bib/bbs046 for further information

Because the most obvious source of variation between lanes is the differences in library size
(i.e. sequencing depth), the simplest form of inter-sample normalization is achieved by
scaling raw read counts in each lane by a single lane-specific factor reflecting its library size.



RNA-SEQ NORMALIZATION METHODS (A SELECTION)

Quantile (Q)
normalization method consists in matching distributions of gene counts across lanes

RPKM
re-scales gene counts to correct for differences in both library sizes and gene length

DESeq
DESeq scaling factor for a given lane is computed as the median of the ratio, for each gene, of
its read count over its geometric mean across all lanes. The underlying idea is that non-DE 
genes should have similar read counts across samples, leading to a ratio of 1



IMPORTANT RNA-SEQ NORMALIZATION

Normalization Method Reference

Li
br

ar
y 

si
ze RPM (Reads Per Million)

1. Includes library size normalization
Tarazona et al. 2011

G
en

e

le
ng

th TPM (Transcripts Per Million)

1. Average length of transcripts + library size
Wagner et al. 2012

Sc
al

in
g

fa
ct

or
s DESeq/DESeq2

1. Included in the DESeq Bioconductor 

package (version 1.6.0) 

Anders & Huber 2010



Marie-Agnès Dillies et al. Brief Bioinform 2012;bib.bbs046

COMPARISON OF NORMALIZATION METHODS
Variation in expression among a set of
30 housekeeping genes in the human 
data, which may be assumed to be
similarly expressed across samples.

in typical DE analyses the majority of
genes under consideration are assumed
to be non-differentially expressed
between conditions. For this reason, it is
useful to examine boxplots of counts across
samples in each dataset, both before and
after normalization; an effective
normalization scheme should result in a 
stabilization of read count distributions
across replicates.



COMING BACK TO THE MAPPING PROBLEM – TWO MAIN
FLAVORS OF RNASEQ MAPPING – GAPPED VS UNGAPPED



MAPPING RNASEQ TO A GENOME – WHERE ARE THE
ISSUES?

Kim et al. (2013) Genome Biology



SPLICE AWARE ALIGNMENTS

1 Wang et al. (2008) Nature 456: 470-6; 3 Robertson et al. (2010) Nat Methods 7: 909-12. 
2 Wu and Nacu (2010) Bioinformatics 26: 873-81. 4 Dobin et al. (2013) Bioinformatics 29: 15-21. 

Splice-aware alignment algorithms
• TopHat1/21

• HiSat2
• SpliceMap2
• GSNAP3

• STAR4



THE TASK – SPLICE-AWARE MAPPING OF RNASEQ 
READS

• known junction signals (GT-AG, GC-AG, and AT-AC) 
• Re-map due to edit distance
• split into smaller non-overlapping segments (25 bp) 
• left and right segments of the same read are

mapped
• within a user-defined maximum intron size



Wang et al. (2008) Nature 456: 470-6

1. Genomic alignment via 
Bowtie

2. ‘Islands of reads’ show 
probable Exonic regions

3. Connection of exons via 
spliced reads using  seed-
and-extend strategy

SPLICE-AWARE ALIGNMENT I - TOPHAT



SPLICE-AWARE ALIGNMENT – TOPHAT2 ALIGNMENTS
OF READS



Dobin et al. (2013) Bioinformatics 29: 15-21

a) Maximum Mappable Prefix

1. Look for the longest substring of a 
read that can be continuously aligned 
to a genome

2. Repeat with the remaining part of the 
read

b) Connect all seeds that could be 
placed in a genome via an extend step

c) Trim terminal poorly mapping regions

SPLICE-AWARE ALIGNMENT II - STAR



HISAT2



HISAT2 - INDEXING



HISAT2 – WORKING WITH DIFFERENT INDICES: 
GLOBAL, LOCAL & REPEAT



THE GENERAL IDEA OF HISAT2

Global Search: a global FM index that represents the entire genome
Local Search: numerous small FM indexes for regions that collectively cover the genome, where each index
represents 57,000 bp



SPLICE-AWARE ALIGNMENT – HISAT2 ALIGNMENT

1. reads that map within an exon

2. … across two exons with 8–15 bp
mapping to one exon

3. across two exons with at least 15 
bp in each exon

(a) it is at least 28 bp long and (b) it maps onto exactly one location



HISAT RUNS IN TWO PHASES
Phase 1 requires a sufficient
coverage to detect splice junctions / 
splice sites

Phase 2 makes use of splice sites to
map reads only barely overlapping
an exon



SPLICE-AWARE ALIGNMENT – HISAT2 HANDLING
PSEUDOGENES 

(i) Mapping of both locations long
enough for partial mapping

(ii) One locationby local indexing, the other
by extension with one mismatch



SPLICE-AWARE ALIGNMENT – HISAT2 ERRORS IN READS

(1)

(3)

(2)



AFTER MAPPING COMES TRANSCRIPT RECONSTRUCTION



TRANSCRIPT RECONSTRUCTION

Cufflinks1: minimal set of 
compatible isoforms (maximum 
precision)
Scripture2: all isoforms that are 
compatible with the read data 
(maximum sensitivity)
MISO3: estimate expression of 
alternatively spliced exons and 
isoforms
1 Trapnell et al. (2010) Nat Biotechnol 28: 511-15
2 Guttman et al. (2010) Nat Biotechnol 28: 503-10
3 Katz et al. (2010) Nat Methods 7: 1009-15



CUFFLINKS FOLLOWS TOPHAT

Trapnell et al. (2010) Nat Biotechnol 28: 511-15 



CUFFLINKS – DEFINE POSSIBILE TRANSCRIPTS

1. With paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as a 
single alignment. The algorithm assembles overlapping ‘bundles’ of fragment
alignments

2. Every fragment is consistent with at least one assembled transcript
3. Every transcript is tiled by reads
4. The number of transcripts is the smallest required to satisfy requirement 1

Bundle: Set of overlapping fragments representing splice variants of only one or few genes



CUFFLINKS – TRANSCRIPT ASSEMBLY
• directed acyclic graph (DAG):

• with one node for each fragment

• Each fragmentàaligned pair of mated reads

• Fragment (paired-end) alignments are of two types:

• those where reads align in their entirety to the genome

• reads which have a split alignment (due to an implied intron) 

• Single reads checking for compatibility: 

• Two reads are compatible if their overlap contains the exact

• same implied introns (or none) 

Trapnell et al. (2010) Nat Biotechnol 28: 511-15 



CUFFLINKS – TRANSCRIPT ASSEMBLY CASES

• Compatible

• Incompatible

• Nested

• Uncertainty of x4 
• Y4 & y5 incompatible



CUFFLINKS – CREATE GRAPH OF PUTATIVE TRANSCRIPTS
Within a ‚bundle‘
Identify pairs of ‘incompatible’ fragments that
must have originated from distinct spliced
mRNA isoforms. Fragments are connected in 
an ‘overlap graph’ when they are compatible
and their alignments overlap in the genome. 
Each fragment has one node in the graph, and
an edge, directed from left to right along the
genome, is placed between each pair of
compatible fragments. 

Example:
yellow, blue, and red fragments must have
originated from separate isoforms, but any
other fragment could have come from the
same transcript as one of these three

Bundle: Set of overlapping fragments representing splice variants of only one or few genes



CUFFLINKS – DEFINE POSSIBILE PATH WITHIN THE
GRAPH

Minimal Path coverage to determine
number of alternative transcripts
The overlap graph here can be minimally
‘covered’ by three paths, each representing
a different isoform. Dilworth's Theorem 
states that the number of mutually
incompatible reads is the same as the
minimum number of transcripts needed to
“explain” all the fragments. 



CUFFLINKS - TRANSCRIPT ABUNDANCE AND
PROBABILITY

Fragments are matched (denoted here using color) to the
transcripts from which they could have originated. The violet
fragment could have originated from the blue or red isoform. 
Gray fragments could have come from any of the three shown. 



CUFFLINKS - TRANSCRIPT ABUNDANCE AND
PROBABILITY

• Cufflinks estimates transcript abundances using a statistical model in which the probability of observing each
fragment is a linear function of the abundances of the transcripts from which it could have originated. 

• Because only the ends of each fragment are sequenced, the length of each may be unknown. Assigning a fragment
to different isoforms often implies a different length for it. Cufflinks can incorporate the distribution of fragment
lengths to help assign fragments to isoforms. For example, the violet fragment would be much longer, and very
improbable according to Cufflinks' model, if it were to come from the red isoform instead of the blue isoform. 



CUFFLINKS - TRANSCRIPT ABUNDANCE AND
PROBABILITY

The program then numerically maximizes a function
that assigns a likelihood to all possible sets of relative 
abundances of the yellow, red and blue isoforms
(γ1,γ2,γ3), producing the abundances that best explain
the observed fragments, shown as a pie chart. 



THE WORKFLOW OF TRANSCRIPT RECONSTRUCTION
FROM ASSEMBLED READS


