
ALGORITHMS IN SEQUENCE
ANALYSIS

De novo genome assembly



STRATEGIES TO SEQUENCE LONG DNA MOLECULES: SHOTGUN 
SEQUENCING
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Template DNA

1. Processing of the template DNA
1. Random fragmentation
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STRATEGIES TO SEQUENCE LONG DNA MOLECULES: SHOTGUN 
SEQUENCING

1. Processing of the template DNA
1. Random fragmentation
2. Size selection  (-> Insert-size1)

Length filter

1 typically several 100 Bp for ‚short-read-technologies (e.g.. Illumina)



STRATEGIES TO SEQUENCE LONG DNA MOLECULES: SHOTGUN 
SEQUENCING

1 each fragment gets the same set of adaptors

1. Processing of the template DNA
1. Random fragmentation
2. Size selection  (-> Insert-size)

2. Append adapters1 (DNA fragements with known sequence) that 
provide the necessary binding sites for downstream wet lab 
experiments (amplification, sequencing), as well as index sequences



STRATEGIES TO SEQUENCE LONG DNA MOLECULES: SHOTGUN 
SEQUENCING

Template DNA

1 typically, we sequence both ends of the insert -> Paired-End Reads

2xRead length < Insert length2xRead length > Insert length

Read length > Insert length

2 if read length > Insert length, you will seqeunce into the adapter

1. Processing of the template DNA
1. Random fragmentation
2. Size selection  (-> Insert-size)

2. Append adapters1 (DNA fragements with known sequence) that 
provide the necessary binding sites for downstream wet lab 
experiments (amplification, sequencing), as well as index sequences

3. Sequence the insert ends



STRATEGIES TO SEQUENCE LONG DNA MOLECULES: SHOTGUN SEQUENCING
SOMETIMES ADAPTER SEQUENCES REMAIN!
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1. Randomly break template DNA into pieces
2. Add adapters of known sequence to the fragment ends
3. Sequence (typically) the ends of the fragments 

Identifying these sequences is simple when we ignore the complexity of the search

Clip adapter sequences



STRATEGIES TO SEQUENCE LONG DNA 
MOLECULES: SHOTGUN SEQUENCING

Read Pair 1
Read Pair 2
Read Pair 3
Read Pair 4
Read Pair 5
Read Pair 6
Read Pair 7
Read Pair 8
Read Pair 9
Read Pair 10
Read Pair 11

5. Reconstruct template

1. Processing of the template DNA
1. Random fragmentation
2. Size selection  (-> Insert-size)

2. Append adapters1 (DNA fragements with known sequence) that 
provide the necessary binding sites for downstream wet lab 
experiments (amplification, sequencing), as well as index sequences

3. Sequence the insert ends
4. Identify and remove adapters from the sequence reads



STRATEGIES TO SEQUENCE LONG DNA 
MOLECULES: SEQUENCE ASSEMBLY

12

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

!?1. Processing of the template DNA
1. Random fragmentation
2. Size selection  (-> Insert-size)

2. Append adapters1 (DNA fragements with known sequence) that 
provide the necessary binding sites for downstream wet lab 
experiments (amplification, sequencing), as well as index sequences

3. Sequence the insert ends
4. Identify and remove adapters from the sequence reads
5. Template reconstruction: (i) de novo; (ii) Reference sequence guided



CLEANING UP THE MESS: CONTIG BUILDING1 DURING DE-NOVO 
ASSEMBLY

13

Com
pare all against all

1 only the general concept. Algorithmic solutions typically take a different approach as we will see later

2. …
3. Sequence the insert ends
4. Identify and remove adapters from the sequence reads
5. De-novo sequence assembly: determine overlap between sequence 

reads and assemble overlapping sequences into contigs.

Read Pair 1
Read Pair 2
Read Pair 3
Read Pair 4
Read Pair 5
Read Pair 6
Read Pair 7
Read Pair 8
Read Pair 9
Read Pair 10
Read Pair 11



CONTIG BUILDING
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Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

2. …
3. Sequence the insert ends
4. Identify and remove adapters from the sequence reads
5. De-novo sequence assembly: determine overlap between sequence 

reads and assemble overlapping sequences into contigs.



CONTIG BUILDING
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Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

Contig1: In order to make it easier to talk about our data gained by the shotgun method of sequencing we have
invented the word "contig". A contig is a set of reads2 that are related to one another by overlap of their
sequences. All reads belong to one and only one contig, and each contig contains at least one read. 

1 Definition from Staden, R (1980). Nucleic Acids Research. 8 (16): 3673–3694 2 In the original text, Staden refers to ‚gel reading‘, a term no longer in use

The reads in a contig can be summed to form a contiguous consensus sequence and the length of this sequence is
the length of the contig.“ (Comment by IE: The contig length resembles, in theory, the length of the
corresponding DNA molecule)



SCAFFOLDING – THE USE OF READ PAIRS FOR CONNECTING NON-
OVERLAPPING FRAGMENTS

16

Template DNA

Read Pair 11Read Pair 2

Read Pair  5

Contig 1 Contig 2 Contig 3

2. …
3. Sequence the insert ends
4. Identify and remove adapters from the sequence reads
5. De-novo sequence assembly: determine overlap between sequence 

reads and assemble overlapping sequences into contigs. Read pair 
information can then be used to build scaffolds1 from physically 
non-overlapping contigs.

1 scaffolds are sometimes also called ‚super-contigs‘



DE-NOVO ASSEMBLY – SCAFFOLDING

17

Read Pair 11Read Pair 2

Read Pair 5

Contig 1 Contig 2 Scaffold 31

Scaffold 1
NN

Scaffold 2
NNNN NN

2. …
3. Sequence the insert ends
4. Identify and remove adapters from the sequence reads
5. De-novo sequence assembly: determine overlap between sequence 

reads and assemble overlapping sequences into contigs. Read pair 
information can then be used to build scaffolds1 from physically 
non-overlapping contigs.

1 A scaffold can consist only of a single contig



DE-NOVO ASSEMBLY – SCAFFOLDING

18

Read Pair 11Read Pair 2

Read Pair 5

Contig 1 Contig 2 Scaffold 31

Scaffold 1
NN

Scaffold 2
NNNN NN

Scaffold: A scaffold consists of ordered and oriented – but typically non-overlapping – contigs separated by
gaps of approximately known length. Scaffolds are typically formed by identifying contig pairs that each contain
one read of a ‚read pair‘1. The contigs in a scaffold are combined to form a contiguous consensus sequence, and
the length of this sequence is the length of the scaffold2.

1 Note, subsequent to a scaffolding step, we typically refer to all consensus sequences as scaffolds, even if they consist of only one contig.

2 The scaffold length is typically shorter than the corresponding DNA molecule, because the run of Ns between two contigs is limited



SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – READ COVERAGE
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1. Coverage: The average number of reads covering a position in the sequenced template DNA. 
Length of genomic segment:  L
Number of reads:                    n         
Length of each read:               l Coverage C = n l / L

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse



SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – READ COVERAGE
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1. Coverage: The average number of reads covering a position in the sequenced template DNA. 
Length of genomic segment:  L
Number of reads:                    n         
Length of each read:               l

How much coverage is enough?
Lander-Waterman model:

Assuming uniform distribution of reads, C=10 results in 1 gapped region per 1,000,000 
nucleotides -> This is no more than a crude rule of thumb and greatly depends on read length, 
repeat composition of the template DNA, etc.

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

Coverage C = n l / L



SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – READ COVERAGE
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1. Coverage: The average number of reads covering a position in the sequenced template DNA. 
Length of genomic segment:  L
Number of reads:                    n         
Length of each read:               l

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

The higher the coverage the better, provided unlimited computational resources1!
The more uniform the coverage distribution the better!

Coverage C = n l / L

1 watch out, some assemblers have a hard-coded upper limit of the allowed coverage. Anything above this limit will be treated as repeat…



SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – N50 SIZE
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2. N50-size: More than 50% of the bases in your 
assembly reside in contigs/scaffolds with at least 
the size determined by the N50 value.  NOTE: You 
can of course specify any other N-value

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

Image source: 
https://sourceforge.net/projects/quast/



SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – N50 SIZE
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2. N50-size: More than 50% of the bases in your assembly reside in contigs/scaffolds with at 
least the size determined by the N50 value.  NOTE: You can of course specify any other N-
value

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

What now tells us the N50 size exactly?
Is it a quality measure as people frequently use it?

When does it make sense to mention the N50 size (just consider RNAseq assemblies)?



SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – N50, NG50, AND
NGA50

24

2. N50-size: More than 50% of the bases in your assembly reside in contigs/scaffolds 
with at least the size determined by the N50 value.  NOTE: You can of course specify 
any other N-value

3. NG50-size: More than 50% of the genome sequence reside in contigs/scaffolds 
with at least the size determined by the NG50 value

4. NGA50-size: More than 50% of the genome sequence reside in contigs/scaffolds of 
at least this size, which can be contiguously aligned to a reference sequence

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse



SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – N50, NG50, AND
NGA50
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5. Contig/scaffold length distribution

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

Image source: 
https://sourceforge.net/projects/quast/



THERE ARE TWO MAIN APPROACHES TO THE SEQUENCE ASSEMBLY PROBLEM

modfied from Compeau et al. (2011) Nature Biotechnology 29(11)

Overlap based assemblies

Word-based (Kmer) 
assemblies



OVERLAP BASED ASSEMBLIES

Interpretation - An overlap can indicate that two reads partially cover the same region of the template 
(A). Alternatively, repeats, i.e. the same or nearly the same sequence occurs more than once in the 
template sequence can induce overlaps.

Definition - An overlap is a region of high sequence similarity between the prefix of one read and the 
suffix of a second read1. Both maximum number of mismatches and minimum length need to be 
determined a priori

1 Note, reads have to be compared in both orientations



OVERLAP-LAYOUT-CONSENSUS ASSEMBLY 
Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA, CANU

Overlap:  find potentially overlapping reads

Layout:  merge reads into contigs and                   
contigs into supercontigs

Consensus:  derive the DNA sequence considering 
all read overlaps, and correct read errors !!"#$"%%"#""%"$$%%!!



DERIVE CONSENSUS SEQUENCE

1. Derive multiple alignment from pairwise read alignments

2. Derive each consensus base by weighted voting

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA



ERROR CORRECTION DURING CONSENSUS SEQUENCE FORMATION1 USING A 
WEIGHTED VOTING

• Correct errors using multiple alignment

TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA

C: 20
C: 35
T: 30
C: 35
C: 40

C: 20
C: 35
C:  0
C: 35
C: 40

A: 15
A: 25
A: 40
A: 25
-

A: 15
A: 25
A: 40
A: 25
A:  0

Basecall Base quality
1 There is also error correction on the read and the assembly level



THE OVERLAP GRAPH

GCATTGCAA TGCAAT

TGGCA CAATT ATTTGAC

GCA CAA

CA
AT

AT

CA
ATT

TGCAA GACAAT

GACGGG

GAC

GAC

1 However, consider how many pair-wise comparisons you need to do, how graph complexity scales with coverage

The construction of an overlap graph is in principle straightforward1. Reads constitute the nodes of the graph, 
and we draw an edge between to nodes if the reads overlap



THE OVERLAP GRAPH

vTraversing the graph such that each node is visited exactly once 
reconstructs the original sequence

vFinding such a Hamiltonian path in a graph of millions of nodes and 
edges is computationally hard. 

vIn order to decrease the search complexity the OLC assembly graph is 
simplified in the layout stage, where segments of the assembly graph 
are compressed into contigs

GCATTGCAA TGCAAT

TGGCA CAATT ATTTGAC

GC
A CAA

CA
AT

AT

CA ATT

TGCAA GACAAT

GACGGG

GA
C

GAC



GRAPH SIMPLIFICATION

Graph simplification 
during the layout phase 
reduces the complexity 
of finding the best path 
through the overlap 
graph by summarizing 
unambiguous paths up 
to the next ‘fork’ into 
contigs.



GACAAT

GACGGG

GAC

GAC

GRAPH SIMPLIFICATION

TGGCAATTTGACTGGCA ATTTGAC
CA ATT

GCATTGCAA TGCAAT

GCA CAA CA
AT AT

TGCAA

CAATT



DE-NOVO SEQUENCE ASSEMBLY:
CAP3

37

Shotgun Sequence Reads

2
3
4
5
6
7



Shotgun Sequence Reads

1
2
3
4
5
6
7

1 2 3 4 5 6 7

DE-NOVO SEQUENCE ASSEMBLY:
CAP3

38

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.



DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS
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Shotgun Sequence Reads

1
2
3
4
5
6
7

1 2 3 4 5 6 7

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character

2. Compute high scoring chains of segments between each read and the combined sequence using local 
alignment search tools. Identify candidate pairs. Every pair is counted only once



DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS
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Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local 
alignment search tools. Identify candidate pairs. Every pair is counted only once.

1

2
3
4
5
6
7

1 2 3 4 5 6 7



DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS
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Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local 
alignment search tools. Identify candidate pairs. Every pair is counted only once.

1

2
3
4
5
6
7

1 2 3 4 5 6 7

Remove the trivial solution (alignment against itself)
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Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local 
alignment search tools. Identify candidate pairs. Every pair is counted only once.

2
3
4
5
6
7

1 2 3 4 5 6 7

Remove the trivial solution (alignment against itself)
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Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local 
alignment search tools. Identify candidate pairs. Every pair is counted only once.

1

2
3
4
5
6
7

1 2 3 4 5 6 7

1



DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS
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Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local 
alignment search tools. Identify candidate pairs. Every pair is counted only once.

1

2
3
4
5
6
7

1 2 3 4 5 6 7

1

1

3 5

1
Candidate pairs for read 1:
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Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local 
alignment search tools. Identify candidate pairs. Every pair is counted only once.

3
4
5
6
7

1

3 5

1
Candidate pairs for read 1:

2

1 2 3 4 5 6 7

2



DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS
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Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local 
alignment search tools. Identify candidate pairs. Every pair is counted only once.

23
4
5
6
7

1 2 3 4 5 6 7

2

1

3 5

1
Candidate pairs for read 1:

6

2
Candidate pairs for read 2:

2

3
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Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local 
alignment search tools. Identify candidate pairs. Every pair is counted only once.

4
5
6
7

1 2 3 4 5 6 7

1

3 5

1
Candidate pairs for read 1:

6

2
Candidate pairs for read 2:

Candidate pairs for read 3:

3

6

3

3

7

3

2

3
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Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local 
alignment search tools. Identify candidate pairs. Every pair is counted only once.

4
5
6
7

1 2 3 4 5 6 7

1

3 5

1Candidate pairs for read 1:

6

2Candidate pairs for read 2:

Candidate pairs for read 3:
6

3

7

3

Candidate pairs for read 7:

.

.

.

2

3



OVERLAPPING READS AND REPEATS

A k-mer that appears N times, initiates N2 comparisons
For an Alu that appears 106 times à 1012 comparisons – too much
Solution:

Discard all k-mers that appear more than 
t ´ Coverage, (t ~ 10)

> 50% of human genome are repeats:

- over 1 million Alu repeats (about 300 bp)

- about 200,000 LINE repeats (1000 bp and longer)

Repeat Repeat Repeat
Green and blue fragments 
are interchangeable when 
assembling repetitive DNA



DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS: POST-PROCESSING
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1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local 
alignment search tools. Identify candidate pairs. Every pair is counted only once.

3. Remove poor quality sequence ends

4. Compute global alignment for the high quality sequence pairs to verify overlaps. 

1

3

5

1

6

2

6

3

7

3

2

3

4



DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS: POST-PROCESSING
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1

3

5

1

6

2

6

3

7

3

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.
2. Compute high scoring chains of segments between each read and the combined sequence using local 

alignment search tools. Identify candidate pairs. Every pair is counted only once.
3. Remove poor quality sequence ends
4. Compute global alignment for the high quality sequence pairs to verify overlaps. Evaluate according to 

the following criteria:
1. minimum length
2. minimum identity
3. minimum similarity
4. number of high-quality mismatches

Remove sequence pairs that do not meet the thresholds for 4.1 to 4.4

4

2

3



DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS: POST-PROCESSING
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1

3

5

1

6

2

6

3

7

3

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.
2. Compute high scoring chains of segments between each read and the combined sequence using local 

alignment search tools. Identify candidate pairs. Every pair is counted only once.
3. Remove poor quality sequence ends
4. Compute global alignment for the high quality sequence pairs to verify overlaps. Evaluate according to 

the following criteria:
1. minimum length
2. minimum identity
3. minimum similarity
4. number of high-quality mismatches

Remove sequence pairs that do not meet the thresholds for 4.1 to 4.4

4

2

3
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1

3

5

1

6

2

6

3

7

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.
2. Compute high scoring chains of segments between each read and the combined sequence using local 

alignment search tools. Identify candidate pairs. Every pair is counted only once.
3. Remove poor quality sequence ends
4. Compute global alignment for the high quality sequence pairs to verify overlaps. Evaluate according to 

the following criteria:
1. minimum length
2. minimum identity
3. minimum similarity
4. number of high-quality mismatches

Remove sequence pairs that do not meet the thresholds for 4.1 to 4.4

4

2

3
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CAP3: CONTIG BUILDING
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5

1

6

2

6

31

3

2

4 7

CAP3: CONTIG BUILDING
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5

1

6

2

6

1

3

2

4 7

CAP3: CONTIG BUILDING
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5

6

1
3

2

6

2

4 7

CAP3: CONTIG BUILDING
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5

6

1
3

2
6

2

1) Generate a general layout using the overlapping reads from the pair-

wise analysis (Greedy algorithm in decreasing order of overlap scores).

2) In a simple view: Check the layout for incompatibilities.

4 7

CAP3: CONTIG BUILDING
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1) Generate a general layout using the overlapping reads from the pair-

wise analysis (Greedy algorithm in decreasing order of overlap scores).

2) In a simple view: Check the layout for incompatibilities.

1) sequence read 1 and 2 are incompatible since they could not be 

aligned.

CAP3: CONTIG BUILDING

59
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1
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2
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1) Generate a general layout using the overlapping reads from the pair-

wise analysis (Greedy algorithm in decreasing order of overlap scores).

2) In a simple view: Check the layout for incompatibilities.

1) sequence read 1 and 2 are incompatible since they could not be 

aligned.

2) resolve incompatibility

3) check for new possible layouts 

CAP3: CONTIG BUILDING

60

5

6

1
3

6
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6

1) Generate a general layout using the overlapping reads from the pair-

wise analysis (Greedy algorithm in decreasing order of overlap scores).

2) In a simple view: Check the layout for incompatibilities.

1) sequence read 1 and 2 are incompatible since they could not be 

aligned.

2) resolve incompatibility

3) check for new possible layouts 

5

1
3 2

4 7

CAP3: CONTIG BUILDING

61



FURTHER STEPS - SCAFFOLDING

1) Generate a general layout using the overlapping reads from the pair-

wise analysis (Greedy algorithm in decreasing order of overlap scores).

2) In a simple view: Check the layout for incompatibilities, remove 

incompatible reads and align. 

3) Build a consensus sequence for each contigs.

4) Order and orient contigs if possible using additional information, e.g., 

paired end reads. 

5

6

1
3 2 4 7

62



THE TWO BASIC CONCEPTS OF DNA SEQUENCE ASSEMBLY

modfied from Compeau et al. (2011) Nature Biotechnology 29(11)



LETS LOOK AT THE SEQUENCE ASSEMBLY PROBLEM FROM A DIFFERENT PERSPECTIVE: 
THE SHORTEST SUPERSTRING PROBLEM
(NICOLAS DE BRUIJN 1946)
Problem: find the shortest (circular) superstring that contains all possible substrings of 
length K over a given alphabet.

for K = 4 and a two letter alphabet  A={0,1} we have 16 different words:

0000, 0001, 0010, 0100, 1000, 0011, 0110, 1100, 1001, 1010, 0101, 0111, 1011, 1101, 1110, 1111

To solve this problem, de Bruijn borrowed from Euler who solved 1735 the ‘Königsberg’ 
problem, i.e. the question whether it is possible to visit each island by crossing each bridge 
exactly once (Eulerian cycle)



EULERIAN CYCLE PROBLEM

• Find a cycle that visits every edge 
exactly once (Linear time)

• An Eulerian Cycle exists if the 
number of ‘outgoing’ edges for a 
node equals the number of 
‘incoming’ edges*. 

• The graph may have 2 nodes with 
an odd number of edges connected 
to it. In this case an Eulerian path 
rather than an Eulerian cycle can be 
found.



DE BRUIJN SOLVED THE PROBLEM BY REPRESENTING K-1 MERS AS NODES AND K MERS AS EDGES 
IN A DIRECTED GRAPH.

By doing so, he related the problem of finding a shortest common 
superstring to the already solved problem of finding an Eulerian cycle in 

a graph.

001 011

100 110

000 010 101 111

0011

0010

0101

1011
1010

1101

0111

1111 1110

1100

1001
0001

1000
0000

0110

0100

I

II

III

IV

V

VI

VII

VIII

IX
X

XI

XII
XIII

XIV

XV

XVI



001 011

100 110

000 010 101 111

0011

0010

0101

1011
1010

1101

0111

1111 1110

1100

1001
0001

1000
0000

0110

0100

I

II

III

IV

V

VI

VII

VIII

IX
X

XI

XII
XIII

XIV

XV

XVI

PASSING THROUGH THE EDGES BY FOLLOWING THE ROMAN NUMBERS RECONSTRUCTS THE 
SUPERSTRING USING EACH WORD EXACTLY ONCE!

I: 0000, II: 0001, III: 0011; IV: 0110; V: 1100; VI: 1001; VII: 0010; VIII: 0101; IX: 1011; X: 0111; XI: 1111;  XII: 1110; XIII: 1101; XIV: 
1010; XV: 0100; XVI: 1000 

0000110010111101



BASIC CONCEPTS OF DE BRUIJN GRAPH BASED ASSEMBLERS

vThe sequence is treated as a consecutive string of words of 
length K

vSequence reads are no longer considered to represent a 
consecutive string of nucleotides. Thus read length as well as read 
overlap become, in principle, irrelevant.

vSequence reads are only used to identify words of length K
occurring in the sequence. 

vGiven perfect data – error-free K-mers providing full coverage
and spanning every repeat – the K-mer graph would be a de 
Bruijn graph and it would contain an Eulerian path, that is, a path
that traverses each edge exactly once. 



DE BRUIJN GRAPH EXAMPLE
SHRED READS INTO K-MERS (K = 3)
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G G A C T A A

G G A

G A C

A C T

C T A

T A A

G A C C A A A

G A C

A C C

C C A

C A A

A A A

Read 1 Read 2

GG
(1x)

GA
(1x)

AC
(1x)

CT
(1x)

TA
(1x)

AA
(1x)

GGA GAC ACT CTA TAA

GA
(1x)

AC
(1x)

CC
(1x)

CA
(1x)

AA
(1x)

AA
(1x)

GAC ACC CCA CAA AAA



DE BRUIJN GRAPH EXAMPLE
MERGE VERTICES LABELED BY IDENTICAL (K-1)-MERS
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Read 1:

Read 2:

Resulting Graph:
GG
(1x

GA
(2x)

AC
(2x)

CT
(1x)

TA
(1x)

AA
(2x)

CC
(1x)

CA
(1x)

AA
(1x)

GG
(1x)

GA
(1x)

AC
(1x)

CT
(1x)

TA
(1x)

AA
(1x)

GA
(1x)

AC
(1x)

CC
(1x)

CA
(1x)

AA
(1x

AA
(1x)



ANOTHER EXAMPLE
CONSTRUCT THE GRAPH (K = 5)
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AGAT
(8x)

ATCC
(7x)

TCCG
(7x)

CCGA
(7x)

CGAT
(6x)

GATG
(5x)

ATGA
(8x)

TGAG
(9x)

GATC
(8x)

AAGT
(3x)

AGTC
(7x)

GTCG
(9x)

TCGA
(10x)

GGCT
(11x)

TAGA
(16x)

AGAG
(9x)

GAGA
(12x)

GACA
(8x)

ACAA
(5x)

GCTT
(8x)

GCTC
(2x)

CTTT
(8x)

CTCT
(1x)

TTTA
(8x)

TCTA
(2x)

TTAG
(12x)

CTAG
(2x)

AGAC
(9x)

CGAG
(8x)

CGAC
(1x)

GAGG
(16x)

GACG
(1x)

AGGC
(16x)

ACGC
(1x)

A branching vertex is caused by either a repeat in the original sequence or a 
sequencing error

Sequencing errors are typically
detected by a coverage cutoff threshold



CONDENSE UNBRANCHED RUNS IN THE GRAPH
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AAGTCGA

TAGA
GCTTTAG

GCTCTAG

GAGACAA

CGAG

CGACGC

GAGGCT

AGATCCGATGAG

AGAG



CORRECT SEQUENCING ERRORS USING A COVERAGE THRESHOLD
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AAGTCGA

TAGA
GCTTTAG

GAGACAA

CGAG

GAGGCT

AGATCCGATGAG

AGAG



AFTER RECONDENSATION
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AAGTCGAG GAGACAAGAGGCTTTAGA

AGATCCGATGAG

AGAG

Source: Serafim Batzoglou

Any non-branching path in this graph 
corresponds to a contig in the original sequence.

Taking the risk of following arbitrary branching 
paths may create chimeric species

Contig 1: AAGTCGAG
Contig 2: GAGGCTTTAGA
Contig 3: AGATCCGATGAG
Contig 4: AGAG
Contig 5: GAGACAA



SUMMARY: THERE ARE TWO MAIN APPROACHES TO THE SEQUENCE ASSEMBLY 
PROBLEM

modified from Compeau et al. (2011) Nature Biotechnology 29(11)

Overlap based assembly
Ø read identity is maintained
Ø intuitive
Ø Reads can be organized in an overlap graph
Ø Graph complexity increases with coverage, 

thus read redundancy inflates the graph 

Kmer approaches
Ø read identity is (temporarily) 

lost…
Ø Reads are organized in 

deBruijn graphs
Ø Graph complexity depends on 

Kmer size
Ø Graph complexity is (by and 

large) independent from 
coverage, read redundancy is 
naturally handled

Ø repeats are represented only 
once in the graph with explicit 
links to the different start and 
end points 



THE MAGIC ‘KMER’ GIVES MOST USERS OF GRAPH BASED ASSEMBLY 
ALGORITHMS A VERY HARD TIME AS THEY HAVE TO DECIDE ON THE SIZE 
OF K.

To give an informed statement we need to make sure to understand what K should represent 
and what the algorithmic requirements of de Bruijn graph assemblers are



K must represent a word that occurs only once in the sequence that 
should be assembled. Thus, K must be sufficiently large.

de Bruijn graph based assemblers assume that each word of length K
occurring in the genome is also represented in the graph. As Kmers are 
collected from a finite set of sequence reads, K must not be too large.  



consider a DNA word of  K=2, how often does it on average occur in a 
string of 16 bp? 

How about a word of K=25*

Take home message: If K is only sufficiently large the 
chance for any Kmer to occur more than once in a 

(repeat-free) genome approaches 0.

Why not using simply the read length as K?



WHY K MUST NOT BE TOO LARGE

AGACTAGAGAATTGCGATAG

A sequence of length 20 contains 11 different words of length 10!

Now, consider the sequence is spanned by 2 reads of length 13:

AGACTAGAGAATTGCGATAG

AGACTAGAGAATT

AGAATTGCGATAG

T:

R1:

R2:

It is easy to see that not all 11 words of length 10 can be reconstructed with the two reads. 
This violates the key assumption of the de Bruijn graphs

It is also easy to see that reducing K ameliorates the problem and eventually gets rid of it 
(just consider K=1…)



ÜBUNG
1. Skizzieren Sie die Vorgehensweise bei der ‘Single Molecule Real Time (SMRT)’ Sequenzierung. Worin liegen 

die wesentlichen Vor- und worin die Herausforderungen dieser Methode? (8 P)

2. Sehen Sie ein Problem darin, wenn die verwendete Index-Sequenz in Ihrem Insert, das Sie sequenzieren wollen, 
vorkommt. Begründen Sie! (2 P)

3. Erläutern Sie das FASTQ-Sequenzformat anhand eines beliebigen Beispiels. (2 P)

4. Die Software FASTQC durchsucht Ihr Sequenzdatensatz nach überrepräsentierten (Teil-)Sequenzen.

1. Skizzieren Sie einen einfachen Algorithmus, der diese Aufgabe leisten kann. (3 P)

2. Mit welcher Speicherkomplexität läuft Ihr Algorithmus und worin sehen Sie das Problem bei der Analyse 
von Datensätzen, die von den heute gängigen Sequenzierungsmaschinen generiert werden? (1 P)

3. Mittels welchem Ansatz löst FASTQC dieses Problem und welche Gefahren birgt dieser? (2 P)

4. Beurteilen Sie die Höhe des Risikos, das sich aus dem Ansatz von FASTQC für Ihre Sequenzanalyse 
ergeben könnte. (2 P)
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Single Molecule Real Time Sequencing (SMRT)

•Sequencing by synthesis

•Parallelized

•Uses DNA polymerase

•Readlength ~ 15 kbp

•Individual reads have a 
substantial sequencing
error (~15%)
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SMRT – Technology 

• zero-mode
waveguide (ZMW) 
reaction chamber

• immobile 
polymerase

•150.000 ZMWs per 
sequencing cell

• fluorescent labeled
phosphate chain
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SMRT – library preparation

• library of overlapping
inserts

• hairpin adaptors create
a circular molecule

• adaptors contain binding
site for DNA polymerase

• sequencing results in a 
long sequencing read

• generate multiple 
subreads from one long
sequencing read

• combine subreads to
create consensus read * single read accuracy ~85%

I

II

III



FASTQ Format – Human readable text format for 
sequence reads

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG 
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT 
+ 
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

Header Information:
EAS139 the unique instrument name 
136 the run id 
FC706VJ the flowcell id 
2 flowcell lane 
2104 tile number within the flowcell lane 
15343 'x'-coordinate of the cluster within the tile
197393 'y'-coordinate of the cluster within the tile 
1 the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y Y if the read is filtered, N otherwise 
18 0 when none of the control bits are on, otherwise it is an even number 
ATCACG index sequence



FASTQ Format – Human readable text format for 
sequence reads

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG 
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT 
+ 
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

Sequence quality information:



FASTQC – Overrepresented Sequences
• Assumption: A normal high-throughput library will contain a diverse set of sequences, with 

no individual sequence making up more than a tiny fraction of the whole
• Question: Are there any (sub-)sequences violating the assumption? If so, we call them 

overrepresented sequences in the set
• Why are we interested in these? 

– Biologically significant?! 
– indicate that the library is contaminated?!
– indicate that the library is not as diverse as you expected?!

• FASTQC module lists all of the sequence which make up more than 0.1% of the total
• To conserve memory only sequences which appear in the first 100,000 sequences are 

tracked to the end of the file
• duplication detection requires an exact sequence match over the whole length of the 

sequence
• any reads over 75bp in length are truncated to 50bp


