
ALGORITHMS IN SEQUENCE
ANALYSIS

De novo genome assembly

STRATEGIES TO SEQUENCE LONG DNA MOLECULES: SHOTGUN
SEQUENCING

5

Template DNA

1. Processing of the template DNA
1. Random fragmentation

STRATEGIES TO SEQUENCE LONG DNA MOLECULES: SHOTGUN
SEQUENCING

6

1. Processing of the template DNA
1. Random fragmentation

STRATEGIES TO SEQUENCE LONG DNA MOLECULES: SHOTGUN
SEQUENCING

1. Processing of the template DNA
1. Random fragmentation
2. Size selection (-> Insert-size1)

Length filter

1 typically several 100 Bp for ‚short-read-technologies (e.g.. Illumina)

STRATEGIES TO SEQUENCE LONG DNA MOLECULES: SHOTGUN
SEQUENCING

1 each fragment gets the same set of adaptors

1. Processing of the template DNA
1. Random fragmentation
2. Size selection (-> Insert-size)

2. Append adapters1 (DNA fragements with known sequence) that
provide the necessary binding sites for downstream wet lab
experiments (amplification, sequencing), as well as index sequences

STRATEGIES TO SEQUENCE LONG DNA MOLECULES: SHOTGUN
SEQUENCING

Template DNA

1 typically, we sequence both ends of the insert -> Paired-End Reads

2xRead length < Insert length2xRead length > Insert length

Read length > Insert length

2 if read length > Insert length, you will seqeunce into the adapter

1. Processing of the template DNA
1. Random fragmentation
2. Size selection (-> Insert-size)

2. Append adapters1 (DNA fragements with known sequence) that
provide the necessary binding sites for downstream wet lab
experiments (amplification, sequencing), as well as index sequences

3. Sequence the insert ends

STRATEGIES TO SEQUENCE LONG DNA MOLECULES: SHOTGUN SEQUENCING
SOMETIMES ADAPTER SEQUENCES REMAIN!

10

1. Randomly break template DNA into pieces
2. Add adapters of known sequence to the fragment ends
3. Sequence (typically) the ends of the fragments

Identifying these sequences is simple when we ignore the complexity of the search

Clip adapter sequences

STRATEGIES TO SEQUENCE LONG DNA
MOLECULES: SHOTGUN SEQUENCING

Read Pair 1
Read Pair 2
Read Pair 3
Read Pair 4
Read Pair 5
Read Pair 6
Read Pair 7
Read Pair 8
Read Pair 9
Read Pair 10
Read Pair 11

5. Reconstruct template

1. Processing of the template DNA
1. Random fragmentation
2. Size selection (-> Insert-size)

2. Append adapters1 (DNA fragements with known sequence) that
provide the necessary binding sites for downstream wet lab
experiments (amplification, sequencing), as well as index sequences

3. Sequence the insert ends
4. Identify and remove adapters from the sequence reads

STRATEGIES TO SEQUENCE LONG DNA
MOLECULES: SEQUENCE ASSEMBLY

12

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

!?1. Processing of the template DNA
1. Random fragmentation
2. Size selection (-> Insert-size)

2. Append adapters1 (DNA fragements with known sequence) that
provide the necessary binding sites for downstream wet lab
experiments (amplification, sequencing), as well as index sequences

3. Sequence the insert ends
4. Identify and remove adapters from the sequence reads
5. Template reconstruction: (i) de novo; (ii) Reference sequence guided

CLEANING UP THE MESS: CONTIG BUILDING1 DURING DE-NOVO
ASSEMBLY

13

Com
pare all against all

1 only the general concept. Algorithmic solutions typically take a different approach as we will see later

2. …
3. Sequence the insert ends
4. Identify and remove adapters from the sequence reads
5. De-novo sequence assembly: determine overlap between sequence

reads and assemble overlapping sequences into contigs.

Read Pair 1
Read Pair 2
Read Pair 3
Read Pair 4
Read Pair 5
Read Pair 6
Read Pair 7
Read Pair 8
Read Pair 9
Read Pair 10
Read Pair 11

CONTIG BUILDING

14

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

2. …
3. Sequence the insert ends
4. Identify and remove adapters from the sequence reads
5. De-novo sequence assembly: determine overlap between sequence

reads and assemble overlapping sequences into contigs.

CONTIG BUILDING

15

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

Contig1: In order to make it easier to talk about our data gained by the shotgun method of sequencing we have
invented the word "contig". A contig is a set of reads2 that are related to one another by overlap of their
sequences. All reads belong to one and only one contig, and each contig contains at least one read.

1 Definition from Staden, R (1980). Nucleic Acids Research. 8 (16): 3673–3694 2 In the original text, Staden refers to ‚gel reading‘, a term no longer in use

The reads in a contig can be summed to form a contiguous consensus sequence and the length of this sequence is
the length of the contig.“ (Comment by IE: The contig length resembles, in theory, the length of the
corresponding DNA molecule)

SCAFFOLDING – THE USE OF READ PAIRS FOR CONNECTING NON-
OVERLAPPING FRAGMENTS

16

Template DNA

Read Pair 11Read Pair 2

Read Pair 5

Contig 1 Contig 2 Contig 3

2. …
3. Sequence the insert ends
4. Identify and remove adapters from the sequence reads
5. De-novo sequence assembly: determine overlap between sequence

reads and assemble overlapping sequences into contigs. Read pair
information can then be used to build scaffolds1 from physically
non-overlapping contigs.

1 scaffolds are sometimes also called ‚super-contigs‘

DE-NOVO ASSEMBLY – SCAFFOLDING

17

Read Pair 11Read Pair 2

Read Pair 5

Contig 1 Contig 2 Scaffold 31

Scaffold 1
NN

Scaffold 2
NNNN NN

2. …
3. Sequence the insert ends
4. Identify and remove adapters from the sequence reads
5. De-novo sequence assembly: determine overlap between sequence

reads and assemble overlapping sequences into contigs. Read pair
information can then be used to build scaffolds1 from physically
non-overlapping contigs.

1 A scaffold can consist only of a single contig

DE-NOVO ASSEMBLY – SCAFFOLDING

18

Read Pair 11Read Pair 2

Read Pair 5

Contig 1 Contig 2 Scaffold 31

Scaffold 1
NN

Scaffold 2
NNNN NN

Scaffold: A scaffold consists of ordered and oriented – but typically non-overlapping – contigs separated by
gaps of approximately known length. Scaffolds are typically formed by identifying contig pairs that each contain
one read of a ‚read pair‘1. The contigs in a scaffold are combined to form a contiguous consensus sequence, and
the length of this sequence is the length of the scaffold2.

1 Note, subsequent to a scaffolding step, we typically refer to all consensus sequences as scaffolds, even if they consist of only one contig.

2 The scaffold length is typically shorter than the corresponding DNA molecule, because the run of Ns between two contigs is limited

SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – READ COVERAGE

19

1. Coverage: The average number of reads covering a position in the sequenced template DNA.
Length of genomic segment: L
Number of reads: n
Length of each read: l Coverage C = n l / L

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – READ COVERAGE

20

1. Coverage: The average number of reads covering a position in the sequenced template DNA.
Length of genomic segment: L
Number of reads: n
Length of each read: l

How much coverage is enough?
Lander-Waterman model:

Assuming uniform distribution of reads, C=10 results in 1 gapped region per 1,000,000
nucleotides -> This is no more than a crude rule of thumb and greatly depends on read length,
repeat composition of the template DNA, etc.

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

Coverage C = n l / L

SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – READ COVERAGE

21

1. Coverage: The average number of reads covering a position in the sequenced template DNA.
Length of genomic segment: L
Number of reads: n
Length of each read: l

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

The higher the coverage the better, provided unlimited computational resources1!
The more uniform the coverage distribution the better!

Coverage C = n l / L

1 watch out, some assemblers have a hard-coded upper limit of the allowed coverage. Anything above this limit will be treated as repeat…

SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – N50 SIZE

22

2. N50-size: More than 50% of the bases in your
assembly reside in contigs/scaffolds with at least
the size determined by the N50 value. NOTE: You
can of course specify any other N-value

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

Image source:
https://sourceforge.net/projects/quast/

SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – N50 SIZE

23

2. N50-size: More than 50% of the bases in your assembly reside in contigs/scaffolds with at
least the size determined by the N50 value. NOTE: You can of course specify any other N-
value

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

What now tells us the N50 size exactly?
Is it a quality measure as people frequently use it?

When does it make sense to mention the N50 size (just consider RNAseq assemblies)?

SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – N50, NG50, AND
NGA50

24

2. N50-size: More than 50% of the bases in your assembly reside in contigs/scaffolds
with at least the size determined by the N50 value. NOTE: You can of course specify
any other N-value

3. NG50-size: More than 50% of the genome sequence reside in contigs/scaffolds
with at least the size determined by the NG50 value

4. NGA50-size: More than 50% of the genome sequence reside in contigs/scaffolds of
at least this size, which can be contiguously aligned to a reference sequence

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

SUMMARY STATISTICS TO DESCRIBE ASSEMBLIES – N50, NG50, AND
NGA50

25

5. Contig/scaffold length distribution

Contig 1 Contig 2 Contig 3

collapse

collapse

collapse

Image source:
https://sourceforge.net/projects/quast/

THERE ARE TWO MAIN APPROACHES TO THE SEQUENCE ASSEMBLY PROBLEM

modfied from Compeau et al. (2011) Nature Biotechnology 29(11)

Overlap based assemblies

Word-based (Kmer)
assemblies

OVERLAP BASED ASSEMBLIES

Interpretation - An overlap can indicate that two reads partially cover the same region of the template
(A). Alternatively, repeats, i.e. the same or nearly the same sequence occurs more than once in the
template sequence can induce overlaps.

Definition - An overlap is a region of high sequence similarity between the prefix of one read and the
suffix of a second read1. Both maximum number of mismatches and minimum length need to be
determined a priori

1 Note, reads have to be compared in both orientations

OVERLAP-LAYOUT-CONSENSUS ASSEMBLY
Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA, CANU

Overlap: find potentially overlapping reads

Layout: merge reads into contigs and
contigs into supercontigs

Consensus: derive the DNA sequence considering
all read overlaps, and correct read errors !!"#$"%%"#""%"$$%%!!

DERIVE CONSENSUS SEQUENCE

1. Derive multiple alignment from pairwise read alignments

2. Derive each consensus base by weighted voting

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

ERROR CORRECTION DURING CONSENSUS SEQUENCE FORMATION1 USING A
WEIGHTED VOTING

• Correct errors using multiple alignment

TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA

C: 20
C: 35
T: 30
C: 35
C: 40

C: 20
C: 35
C: 0
C: 35
C: 40

A: 15
A: 25
A: 40
A: 25
-

A: 15
A: 25
A: 40
A: 25
A: 0

Basecall Base quality
1 There is also error correction on the read and the assembly level

THE OVERLAP GRAPH

GCATTGCAA TGCAAT

TGGCA CAATT ATTTGAC

GCA CAA

CA
AT

AT

CA
ATT

TGCAA GACAAT

GACGGG

GAC

GAC

1 However, consider how many pair-wise comparisons you need to do, how graph complexity scales with coverage

The construction of an overlap graph is in principle straightforward1. Reads constitute the nodes of the graph,
and we draw an edge between to nodes if the reads overlap

THE OVERLAP GRAPH

vTraversing the graph such that each node is visited exactly once
reconstructs the original sequence

vFinding such a Hamiltonian path in a graph of millions of nodes and
edges is computationally hard.

vIn order to decrease the search complexity the OLC assembly graph is
simplified in the layout stage, where segments of the assembly graph
are compressed into contigs

GCATTGCAA TGCAAT

TGGCA CAATT ATTTGAC

GC
A CAA

CA
AT

AT

CA ATT

TGCAA GACAAT

GACGGG

GA
C

GAC

GRAPH SIMPLIFICATION

Graph simplification
during the layout phase
reduces the complexity
of finding the best path
through the overlap
graph by summarizing
unambiguous paths up
to the next ‘fork’ into
contigs.

GACAAT

GACGGG

GAC

GAC

GRAPH SIMPLIFICATION

TGGCAATTTGACTGGCA ATTTGAC
CA ATT

GCATTGCAA TGCAAT

GCA CAA CA
AT AT

TGCAA

CAATT

DE-NOVO SEQUENCE ASSEMBLY:
CAP3

37

Shotgun Sequence Reads

2
3
4
5
6
7

Shotgun Sequence Reads

1
2
3
4
5
6
7

1 2 3 4 5 6 7

DE-NOVO SEQUENCE ASSEMBLY:
CAP3

38

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS

39

Shotgun Sequence Reads

1
2
3
4
5
6
7

1 2 3 4 5 6 7

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character

2. Compute high scoring chains of segments between each read and the combined sequence using local
alignment search tools. Identify candidate pairs. Every pair is counted only once

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS

40

Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local
alignment search tools. Identify candidate pairs. Every pair is counted only once.

1

2
3
4
5
6
7

1 2 3 4 5 6 7

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS

41

Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local
alignment search tools. Identify candidate pairs. Every pair is counted only once.

1

2
3
4
5
6
7

1 2 3 4 5 6 7

Remove the trivial solution (alignment against itself)

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS

42

Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local
alignment search tools. Identify candidate pairs. Every pair is counted only once.

2
3
4
5
6
7

1 2 3 4 5 6 7

Remove the trivial solution (alignment against itself)

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS

43

Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local
alignment search tools. Identify candidate pairs. Every pair is counted only once.

1

2
3
4
5
6
7

1 2 3 4 5 6 7

1

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS

44

Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local
alignment search tools. Identify candidate pairs. Every pair is counted only once.

1

2
3
4
5
6
7

1 2 3 4 5 6 7

1

1

3 5

1
Candidate pairs for read 1:

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS

45

Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local
alignment search tools. Identify candidate pairs. Every pair is counted only once.

3
4
5
6
7

1

3 5

1
Candidate pairs for read 1:

2

1 2 3 4 5 6 7

2

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS

46

Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local
alignment search tools. Identify candidate pairs. Every pair is counted only once.

23
4
5
6
7

1 2 3 4 5 6 7

2

1

3 5

1
Candidate pairs for read 1:

6

2
Candidate pairs for read 2:

2

3

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS

47

Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local
alignment search tools. Identify candidate pairs. Every pair is counted only once.

4
5
6
7

1 2 3 4 5 6 7

1

3 5

1
Candidate pairs for read 1:

6

2
Candidate pairs for read 2:

Candidate pairs for read 3:

3

6

3

3

7

3

2

3

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS

48

Shotgun Sequence Reads

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local
alignment search tools. Identify candidate pairs. Every pair is counted only once.

4
5
6
7

1 2 3 4 5 6 7

1

3 5

1Candidate pairs for read 1:

6

2Candidate pairs for read 2:

Candidate pairs for read 3:
6

3

7

3

Candidate pairs for read 7:

.

.

.

2

3

OVERLAPPING READS AND REPEATS

A k-mer that appears N times, initiates N2 comparisons
For an Alu that appears 106 times à 1012 comparisons – too much
Solution:

Discard all k-mers that appear more than
t ´ Coverage, (t ~ 10)

> 50% of human genome are repeats:

- over 1 million Alu repeats (about 300 bp)

- about 200,000 LINE repeats (1000 bp and longer)

Repeat Repeat Repeat
Green and blue fragments
are interchangeable when
assembling repetitive DNA

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS: POST-PROCESSING

50

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.

2. Compute high scoring chains of segments between each read and the combined sequence using local
alignment search tools. Identify candidate pairs. Every pair is counted only once.

3. Remove poor quality sequence ends

4. Compute global alignment for the high quality sequence pairs to verify overlaps.

1

3

5

1

6

2

6

3

7

3

2

3

4

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS: POST-PROCESSING

51

1

3

5

1

6

2

6

3

7

3

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.
2. Compute high scoring chains of segments between each read and the combined sequence using local

alignment search tools. Identify candidate pairs. Every pair is counted only once.
3. Remove poor quality sequence ends
4. Compute global alignment for the high quality sequence pairs to verify overlaps. Evaluate according to

the following criteria:
1. minimum length
2. minimum identity
3. minimum similarity
4. number of high-quality mismatches

Remove sequence pairs that do not meet the thresholds for 4.1 to 4.4

4

2

3

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS: POST-PROCESSING

52

1

3

5

1

6

2

6

3

7

3

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.
2. Compute high scoring chains of segments between each read and the combined sequence using local

alignment search tools. Identify candidate pairs. Every pair is counted only once.
3. Remove poor quality sequence ends
4. Compute global alignment for the high quality sequence pairs to verify overlaps. Evaluate according to

the following criteria:
1. minimum length
2. minimum identity
3. minimum similarity
4. number of high-quality mismatches

Remove sequence pairs that do not meet the thresholds for 4.1 to 4.4

4

2

3

DE-NOVO SEQUENCE ASSEMBLY (CAP3)
SEARCH FOR LOCAL ALIGNMENTS: POST-PROCESSING

53

1

3

5

1

6

2

6

3

7

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character.
2. Compute high scoring chains of segments between each read and the combined sequence using local

alignment search tools. Identify candidate pairs. Every pair is counted only once.
3. Remove poor quality sequence ends
4. Compute global alignment for the high quality sequence pairs to verify overlaps. Evaluate according to

the following criteria:
1. minimum length
2. minimum identity
3. minimum similarity
4. number of high-quality mismatches

Remove sequence pairs that do not meet the thresholds for 4.1 to 4.4

4

2

3

1

3

1

6

2

6

3

2

3

5

4 7

CAP3: CONTIG BUILDING

54

5

1

6

2

6

31

3

2

4 7

CAP3: CONTIG BUILDING

55

5

1

6

2

6

1

3

2

4 7

CAP3: CONTIG BUILDING

56

5

6

1
3

2

6

2

4 7

CAP3: CONTIG BUILDING

57

5

6

1
3

2
6

2

1) Generate a general layout using the overlapping reads from the pair-

wise analysis (Greedy algorithm in decreasing order of overlap scores).

2) In a simple view: Check the layout for incompatibilities.

4 7

CAP3: CONTIG BUILDING

58

1) Generate a general layout using the overlapping reads from the pair-

wise analysis (Greedy algorithm in decreasing order of overlap scores).

2) In a simple view: Check the layout for incompatibilities.

1) sequence read 1 and 2 are incompatible since they could not be

aligned.

CAP3: CONTIG BUILDING

59

5

6

1
3

2
6

2

4 7

1) Generate a general layout using the overlapping reads from the pair-

wise analysis (Greedy algorithm in decreasing order of overlap scores).

2) In a simple view: Check the layout for incompatibilities.

1) sequence read 1 and 2 are incompatible since they could not be

aligned.

2) resolve incompatibility

3) check for new possible layouts

CAP3: CONTIG BUILDING

60

5

6

1
3

6

2

4 7

6

1) Generate a general layout using the overlapping reads from the pair-

wise analysis (Greedy algorithm in decreasing order of overlap scores).

2) In a simple view: Check the layout for incompatibilities.

1) sequence read 1 and 2 are incompatible since they could not be

aligned.

2) resolve incompatibility

3) check for new possible layouts

5

1
3 2

4 7

CAP3: CONTIG BUILDING

61

FURTHER STEPS - SCAFFOLDING

1) Generate a general layout using the overlapping reads from the pair-

wise analysis (Greedy algorithm in decreasing order of overlap scores).

2) In a simple view: Check the layout for incompatibilities, remove

incompatible reads and align.

3) Build a consensus sequence for each contigs.

4) Order and orient contigs if possible using additional information, e.g.,

paired end reads.

5

6

1
3 2 4 7

62

THE TWO BASIC CONCEPTS OF DNA SEQUENCE ASSEMBLY

modfied from Compeau et al. (2011) Nature Biotechnology 29(11)

LETS LOOK AT THE SEQUENCE ASSEMBLY PROBLEM FROM A DIFFERENT PERSPECTIVE:
THE SHORTEST SUPERSTRING PROBLEM
(NICOLAS DE BRUIJN 1946)
Problem: find the shortest (circular) superstring that contains all possible substrings of
length K over a given alphabet.

for K = 4 and a two letter alphabet A={0,1} we have 16 different words:

0000, 0001, 0010, 0100, 1000, 0011, 0110, 1100, 1001, 1010, 0101, 0111, 1011, 1101, 1110, 1111

To solve this problem, de Bruijn borrowed from Euler who solved 1735 the ‘Königsberg’
problem, i.e. the question whether it is possible to visit each island by crossing each bridge
exactly once (Eulerian cycle)

EULERIAN CYCLE PROBLEM

• Find a cycle that visits every edge
exactly once (Linear time)

• An Eulerian Cycle exists if the
number of ‘outgoing’ edges for a
node equals the number of
‘incoming’ edges*.

• The graph may have 2 nodes with
an odd number of edges connected
to it. In this case an Eulerian path
rather than an Eulerian cycle can be
found.

DE BRUIJN SOLVED THE PROBLEM BY REPRESENTING K-1 MERS AS NODES AND K MERS AS EDGES
IN A DIRECTED GRAPH.

By doing so, he related the problem of finding a shortest common
superstring to the already solved problem of finding an Eulerian cycle in

a graph.

001 011

100 110

000 010 101 111

0011

0010

0101

1011
1010

1101

0111

1111 1110

1100

1001
0001

1000
0000

0110

0100

I

II

III

IV

V

VI

VII

VIII

IX
X

XI

XII
XIII

XIV

XV

XVI

001 011

100 110

000 010 101 111

0011

0010

0101

1011
1010

1101

0111

1111 1110

1100

1001
0001

1000
0000

0110

0100

I

II

III

IV

V

VI

VII

VIII

IX
X

XI

XII
XIII

XIV

XV

XVI

PASSING THROUGH THE EDGES BY FOLLOWING THE ROMAN NUMBERS RECONSTRUCTS THE
SUPERSTRING USING EACH WORD EXACTLY ONCE!

I: 0000, II: 0001, III: 0011; IV: 0110; V: 1100; VI: 1001; VII: 0010; VIII: 0101; IX: 1011; X: 0111; XI: 1111; XII: 1110; XIII: 1101; XIV:
1010; XV: 0100; XVI: 1000

0000110010111101

BASIC CONCEPTS OF DE BRUIJN GRAPH BASED ASSEMBLERS

vThe sequence is treated as a consecutive string of words of
length K

vSequence reads are no longer considered to represent a
consecutive string of nucleotides. Thus read length as well as read
overlap become, in principle, irrelevant.

vSequence reads are only used to identify words of length K
occurring in the sequence.

vGiven perfect data – error-free K-mers providing full coverage
and spanning every repeat – the K-mer graph would be a de
Bruijn graph and it would contain an Eulerian path, that is, a path
that traverses each edge exactly once.

DE BRUIJN GRAPH EXAMPLE
SHRED READS INTO K-MERS (K = 3)

71

G G A C T A A

G G A

G A C

A C T

C T A

T A A

G A C C A A A

G A C

A C C

C C A

C A A

A A A

Read 1 Read 2

GG
(1x)

GA
(1x)

AC
(1x)

CT
(1x)

TA
(1x)

AA
(1x)

GGA GAC ACT CTA TAA

GA
(1x)

AC
(1x)

CC
(1x)

CA
(1x)

AA
(1x)

AA
(1x)

GAC ACC CCA CAA AAA

DE BRUIJN GRAPH EXAMPLE
MERGE VERTICES LABELED BY IDENTICAL (K-1)-MERS

72

Read 1:

Read 2:

Resulting Graph:
GG
(1x

GA
(2x)

AC
(2x)

CT
(1x)

TA
(1x)

AA
(2x)

CC
(1x)

CA
(1x)

AA
(1x)

GG
(1x)

GA
(1x)

AC
(1x)

CT
(1x)

TA
(1x)

AA
(1x)

GA
(1x)

AC
(1x)

CC
(1x)

CA
(1x)

AA
(1x

AA
(1x)

ANOTHER EXAMPLE
CONSTRUCT THE GRAPH (K = 5)

73

AGAT
(8x)

ATCC
(7x)

TCCG
(7x)

CCGA
(7x)

CGAT
(6x)

GATG
(5x)

ATGA
(8x)

TGAG
(9x)

GATC
(8x)

AAGT
(3x)

AGTC
(7x)

GTCG
(9x)

TCGA
(10x)

GGCT
(11x)

TAGA
(16x)

AGAG
(9x)

GAGA
(12x)

GACA
(8x)

ACAA
(5x)

GCTT
(8x)

GCTC
(2x)

CTTT
(8x)

CTCT
(1x)

TTTA
(8x)

TCTA
(2x)

TTAG
(12x)

CTAG
(2x)

AGAC
(9x)

CGAG
(8x)

CGAC
(1x)

GAGG
(16x)

GACG
(1x)

AGGC
(16x)

ACGC
(1x)

A branching vertex is caused by either a repeat in the original sequence or a
sequencing error

Sequencing errors are typically
detected by a coverage cutoff threshold

CONDENSE UNBRANCHED RUNS IN THE GRAPH

74

AAGTCGA

TAGA
GCTTTAG

GCTCTAG

GAGACAA

CGAG

CGACGC

GAGGCT

AGATCCGATGAG

AGAG

CORRECT SEQUENCING ERRORS USING A COVERAGE THRESHOLD

75

AAGTCGA

TAGA
GCTTTAG

GAGACAA

CGAG

GAGGCT

AGATCCGATGAG

AGAG

AFTER RECONDENSATION

76

AAGTCGAG GAGACAAGAGGCTTTAGA

AGATCCGATGAG

AGAG

Source: Serafim Batzoglou

Any non-branching path in this graph
corresponds to a contig in the original sequence.

Taking the risk of following arbitrary branching
paths may create chimeric species

Contig 1: AAGTCGAG
Contig 2: GAGGCTTTAGA
Contig 3: AGATCCGATGAG
Contig 4: AGAG
Contig 5: GAGACAA

SUMMARY: THERE ARE TWO MAIN APPROACHES TO THE SEQUENCE ASSEMBLY
PROBLEM

modified from Compeau et al. (2011) Nature Biotechnology 29(11)

Overlap based assembly
Ø read identity is maintained
Ø intuitive
Ø Reads can be organized in an overlap graph
Ø Graph complexity increases with coverage,

thus read redundancy inflates the graph

Kmer approaches
Ø read identity is (temporarily)

lost…
Ø Reads are organized in

deBruijn graphs
Ø Graph complexity depends on

Kmer size
Ø Graph complexity is (by and

large) independent from
coverage, read redundancy is
naturally handled

Ø repeats are represented only
once in the graph with explicit
links to the different start and
end points

THE MAGIC ‘KMER’ GIVES MOST USERS OF GRAPH BASED ASSEMBLY
ALGORITHMS A VERY HARD TIME AS THEY HAVE TO DECIDE ON THE SIZE
OF K.

To give an informed statement we need to make sure to understand what K should represent
and what the algorithmic requirements of de Bruijn graph assemblers are

K must represent a word that occurs only once in the sequence that
should be assembled. Thus, K must be sufficiently large.

de Bruijn graph based assemblers assume that each word of length K
occurring in the genome is also represented in the graph. As Kmers are
collected from a finite set of sequence reads, K must not be too large.

consider a DNA word of K=2, how often does it on average occur in a
string of 16 bp?

How about a word of K=25*

Take home message: If K is only sufficiently large the
chance for any Kmer to occur more than once in a

(repeat-free) genome approaches 0.

Why not using simply the read length as K?

WHY K MUST NOT BE TOO LARGE

AGACTAGAGAATTGCGATAG

A sequence of length 20 contains 11 different words of length 10!

Now, consider the sequence is spanned by 2 reads of length 13:

AGACTAGAGAATTGCGATAG

AGACTAGAGAATT

AGAATTGCGATAG

T:

R1:

R2:

It is easy to see that not all 11 words of length 10 can be reconstructed with the two reads.
This violates the key assumption of the de Bruijn graphs

It is also easy to see that reducing K ameliorates the problem and eventually gets rid of it
(just consider K=1…)

ÜBUNG
1. Skizzieren Sie die Vorgehensweise bei der ‘Single Molecule Real Time (SMRT)’ Sequenzierung. Worin liegen

die wesentlichen Vor- und worin die Herausforderungen dieser Methode? (8 P)

2. Sehen Sie ein Problem darin, wenn die verwendete Index-Sequenz in Ihrem Insert, das Sie sequenzieren wollen,
vorkommt. Begründen Sie! (2 P)

3. Erläutern Sie das FASTQ-Sequenzformat anhand eines beliebigen Beispiels. (2 P)

4. Die Software FASTQC durchsucht Ihr Sequenzdatensatz nach überrepräsentierten (Teil-)Sequenzen.

1. Skizzieren Sie einen einfachen Algorithmus, der diese Aufgabe leisten kann. (3 P)

2. Mit welcher Speicherkomplexität läuft Ihr Algorithmus und worin sehen Sie das Problem bei der Analyse
von Datensätzen, die von den heute gängigen Sequenzierungsmaschinen generiert werden? (1 P)

3. Mittels welchem Ansatz löst FASTQC dieses Problem und welche Gefahren birgt dieser? (2 P)

4. Beurteilen Sie die Höhe des Risikos, das sich aus dem Ansatz von FASTQC für Ihre Sequenzanalyse
ergeben könnte. (2 P)

83

Single Molecule Real Time Sequencing (SMRT)

•Sequencing by synthesis

•Parallelized

•Uses DNA polymerase

•Readlength ~ 15 kbp

•Individual reads have a
substantial sequencing
error (~15%)

84

SMRT – Technology

• zero-mode
waveguide (ZMW)
reaction chamber

• immobile
polymerase

•150.000 ZMWs per
sequencing cell

• fluorescent labeled
phosphate chain

85

SMRT – library preparation

• library of overlapping
inserts

• hairpin adaptors create
a circular molecule

• adaptors contain binding
site for DNA polymerase

• sequencing results in a
long sequencing read

• generate multiple
subreads from one long
sequencing read

• combine subreads to
create consensus read * single read accuracy ~85%

I

II

III

FASTQ Format – Human readable text format for
sequence reads

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

Header Information:
EAS139 the unique instrument name
136 the run id
FC706VJ the flowcell id
2 flowcell lane
2104 tile number within the flowcell lane
15343 'x'-coordinate of the cluster within the tile
197393 'y'-coordinate of the cluster within the tile
1 the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y Y if the read is filtered, N otherwise
18 0 when none of the control bits are on, otherwise it is an even number
ATCACG index sequence

FASTQ Format – Human readable text format for
sequence reads

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

Sequence quality information:

FASTQC – Overrepresented Sequences
• Assumption: A normal high-throughput library will contain a diverse set of sequences, with

no individual sequence making up more than a tiny fraction of the whole
• Question: Are there any (sub-)sequences violating the assumption? If so, we call them

overrepresented sequences in the set
• Why are we interested in these?

– Biologically significant?!
– indicate that the library is contaminated?!
– indicate that the library is not as diverse as you expected?!

• FASTQC module lists all of the sequence which make up more than 0.1% of the total
• To conserve memory only sequences which appear in the first 100,000 sequences are

tracked to the end of the file
• duplication detection requires an exact sequence match over the whole length of the

sequence
• any reads over 75bp in length are truncated to 50bp

