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• A tree is an evolutionary hypothesis
• A tree is a directed graph consisting of a 

set of nodes and an set of edges (no 
cycles possible)

• Typically we constrain trees to consist of 
nodes with indegree of 1 and outdegree
of 0 (leafs) or 2 (exception: root node)

• Trees can be rooted (time!) or unrooted
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Revisiting simulating protein sequence evolution

1 Jain et al. (2019) GBE 11:531-545

VWA_2 Neisseria_PilC

• Genereate a benchmark data set

• Predict the evolutionary
behavior of a sequence1

Root sequence Tree

Evolved sequences as leafs of tree
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Why are functionally equivalent proteins not identified as
homologs? The yeast and human RNase MRP complexes involved in 

rRNA processing
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• Each box holds the functionally
equivalent human and yeast
proteins

• Red boxes indicate proteins that
are not identified as orthologs1

Why??

1 Sequences in two species that evolve the same time independent from each other as the species
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Why are functionally equivalent proteins not identified as
homologs? The yeast and human RNase MRP complexes involved in 

rRNA processing
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Why??
• H1 – the function is taken over

by non-homologous proteins
• Proteins evolve too quickly and

share no sig. sequence similarity
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The simulation of time dependent sequence change
using the Gillespie algorithm1

Initialization: Initialize the number of evolving 
positions in the system, event types, event 
rates, simulation time, and random number 
generators.
Monte Carlo step: Generate random numbers 
to determine the next event to occur as well as 
the time interval. The probability of a given 
event to be chosen is proportional to its event 
rate.
Update: Increase the time step by the 
randomly generated time in Step 2. Update the 
event rate based on the event that occurred.
Iterate: Go back to Step 2 unless the 
simulation time has been exceeded.

Gillespie, Daniel T. (1977). "Exact Stochastic Simulation of Coupled Chemical Reactions". The Journal of Physical Chemistry. 81 (25): 2340–2361

L <- Ldel + Lins + Lsubst

trem = t
tw ~ Exp(L)
while tw < trem do

randVar ~ Unif (0,1)
If randVar < Lins/L then

doInsertion()
else if randVar < (Lins + Ldel) / L then

doDeletion()
else

doSubstitution()
end if
L = updateEventRate()
trem <- trem - tw

tw ~ Exp(L)
end while
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Modelling the substitution process in a step-wise manner

L <- Ldel + Lins + Lsubst

trem = t
tw ~ Exp(L)
while tw < trem do

randVar ~ Unif (0,1)

If randVar < Lins/L then
doInsertion()

else if randVar < (Lins + Ldel) / L then
doDeletion()

else
doSubstitution()

end if
L = updateEventRate()

trem <- trem - tw

tw ~ Exp(L)

end while

Individual event rates for 
insertion, deletion, and 
substitution

Total Event rate

Time we still have in front of us

Waiting time for the next event
Exponential distribution 
with parameter L

Uniform distribution
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Computing Event rates
Ldel and Lins

Given a sequence of length L drawn at random from the Alphabet A={A,G,C,T} with 

frequencies   π i =
1
4

,∀i ∈ {A,C,G,T}

Ldel = Lldel

Be ldel the deletion rate per position, and lins the insertion rate per position, the we 
compute the event rates for deletions as

and likewise the event rate for insertions as 

Lins = (L+1)lins

Now it is already easy to see why in our simulation algorithm we have to update both 
event rates after each modification of the sequence as both insertions and deletions 
modify L.

How long should an insertion or a 
deletion be?
(i.e. what is the probability 
function modeling the insertion 
and deletion length distribution?)
And how to compute Lsubst?
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Computing Event rates
Lsubst

Given a sequence of length l drawn at random from the Alphabet A={A,G,C,T} with 

frequencies   π i =
1
4

,∀i ∈ {A,C,G,T}

S1:…AAGGCTTCAG…

S2:…AAGGCCTCAG…

S3:…ATGGACTCAG…

Time tn

Time tn+1

1. Markov chain of first order The 
evolutionary process has no memory, i.e. 
sequence S2 evolves to S3 in time tn+1
independent from S1

2. Stationary
The frequency πj of the nucleotides
oder amino acids do not change.

3. time-reversible
πi · qij = qji · πj
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The rate matrix Q provides the rates for the 12 possible 
transitions between the nucleotides*. Assuming time 

reversibility reduces the number of rates to 6.

€ 

Q =

− a b c
a − d e
b d − f
c e f −

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

A C G T

The subsitution rate of 
nucleotide i to nucleotide j is 
provided by the entry qij in the 
rate matrix Q.

*Die four nucleotides can be considered again as ‘states’ **Rates are no probabilities, as they are time-independent!
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Computing Event rates
Lsubst

Given a sequence of length L drawn at random from the alphabet A={A,G,C,T} with 

frequencies   π i =
1
4

,∀i ∈ {A,C,G,T}

Let Q be the substitution rate matrix

qil = qij
j≠i
∑ rl

Then we compute the total rate of substituting base i at position l as

and the total substitution rate Lsubst computes as

Λsubst = qil
l
∑

rl re-scales time locally. It is drawn 
from a gamma distribution with a 
mean of 1 and a shape parameter a
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How to represent functional constraints in the simulation 
of the evolutionary process?

A C G A T G C
qA qC qG qA qT qG qC

r1 r2 r3 r4 r5 r6 r7

ldel ldel ldel ldel ldel ldel ldel

lins lins lins lins lins lins lins lins

Substitution rate

Subst. rate scaling factor

Deletion rate

Insertion rate

Functional constraints can be represented in such a model only via a 
modification of the position specific rate parameters.

For example, small ri locally reduce the time that is available for a 
substitution
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How to infer evolutionary constraints on protein
sequences?

Collect
Homologs

Compute MSA

Generate HMM

In a nutshell
• State-specific emission probabilities parameterize substitution rates
• State-specific transition rates parameterize position-specific insertion-

and deletion rates
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A number of tools exist to simulate the evolution of 

biological sequences using various evolutionary models

SeqGen (Rambaut and Grassly 1997)

Event space contains only substitutions

sites evolve independently and identically

possibility of randomly assigning rate scaling factors across sites.

Rose (Stoye et al. 1998)

Event space contains substitutions, insertions and deletions

Insertions and deletions are randomly placed

Insertion and deletion lengths are drawn from a single distribution

INDELible (Fletcher and Yang 2009)&Indel-Seq-Gen (Strope et al. 2009)

facilitate manual assignment of model parameters to individual partitions of 

the data (i.e. local constraints). This helps to modulate the evolutionary process 

for functional and non-functional regions (‘domains’ vs. ‘linker’)

REvolver (Köstler et al. 2012)

facilitates an automated assignment of constraints on the evolutionary process

several Indel-Distributions are available

pHMM guided (Pfam)
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Simulating protein sequence evolution: Maintaining 
evolutionary constraints

we (
typ

ica
lly

) g
et

1 Koestler et al. (2012) MBE 29:2133-2145; https://github.com/BIONF/REvolver 

REvolver 1
➢site-specific substitution model
➢position-specific indel rates
➢position-specific indel length distributions

Protein-specific parameterization
➢one substitution model
➢site independent evolution
➢uniform distribution of indel positions
➢one indel length distribution

General settings

VWA_2 Neisseria_PilC
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Why are functionally equivalent proteins not identified as
homologs? The yeast and human RNase MRP complexes involved in 

rRNA processing
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Conclusion
• Simulations shows that Four out 

of six proteins evolve at rates
and patterns that render human 
and yeast proteins no longer
significantly similar



17

Why are functionally equivalent proteins not identified as
homologs? The yeast and human RNase MRP complexes involved in 

rRNA processing
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Conclusion
• For example, Rmp1 seems to

evolve largely free of constraint
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• A tree is an evolutionary hypothesis
• A tree is a directed graph consisting of a 

set of nodes and an set of edges (no 
cycles possible)

• Typically we constrain trees to consist of 
nodes with indegree of 1 and outdegree
of 0 (leafs) or 2 (exception: root node)

• Trees can be rooted (time!) or unrooted
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What are phylogenetic trees good for?

Which came first, the chicken or the egg?
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Some notations
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Basically, we have three different means to 
reconstruct phylogenetic trees from sequence data

Find tree that 
requires the least 

number of 
changes

Find the tree 
that most 

likely gave rise 
to the data

Reconstruct the best fitting tree from a pair-wise distance matrix1

1 see Grundlagen der Bioinformatik, Lecture 12
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Evolutionary models are often described using a substitution rate matrix Q and 
character frequencies Π.

€ 

Q =

− a b c
a − d e
b d − f
c e f −

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

A C G T

€ 

Π = π A ,πC ,πG ,πT( )

Modelling sequence evolution

From Q and P we reconstruct a 
substitution probability matrix P 
where Pij(t) is the probability of 
changing i to j in time t.

! " = $%&
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€ 

L t | s→ # s ( ) =Π
i=1

m
π si

× Psi # s i
(t)( )

S‘: GATCCTGAGAGAAATAAAC
S: GGTCCTGACAGAAATAAAC

m: alignment length
Si: character at position i in sequence S
S’i: character at position i in sequence S’

With the likelihood function, we can now compute the 
likelihood for a time t that separates the sequences S and S’

This value denotes the probability 
to observe the site pattern 
(alignment column) at position i in 
the alignment. 
More precisely, it is the 
probability that nucleotide Si has 
been substituted by nucleotide S’i
after time t.
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tt t t t t t t t tt t t t t t t t

€ 

L t | s→ # s ( ) =Π
i=1

m
π si

× Psi # s i
(t)( )

S‘: GATCCTGAGAGAAATAAAC

S: GGTCCTGACAGAAATAAAC

*watch out, products of probabilities become small very quckly. We therefore compute typically in log scale, hence the log-likelihoods

Log-Likelihood surface under JC69

time (in subst. per site)

We can now compute column-wise the likelihood for any time t and 
identify that t for which L(t|S->S’)* is maximal over the entire alignment

Probability to see the letter at 
position i in the sequence

Probability (given our model), that 
Si was replaced by S’i in time t.

Multiply ‘site-likelihoods’ across all m
positions of the alignment

t
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1 2

5 3 4

6

A 0

C 1

G 0

T 0

A 0

C 0

G 1

T 0 A 0

C 1

G 0

T 0

A 0

C 1

G 0

T 0

A

C

G

T A

C

G

T

d1 d2

d3
d4

k

1 …C…

2 …G…

3 …C…

4 …C…

with dx = 0.1 ∀ x ∈ 1,.., 5{ }, and Pij (0.1) =
0.91 if i = j

0.03 for each i ≠ j

$
%
&

'&

d5

€ 

L5(i) = [L(C) × PiC (d1)] × [L(G) × PiG (d2)],∀ i∈{A,C,G,T}

Calculating tree likelihoods

1

1 here you compute the partial likelihood L5(i) for each ancestral nucleotide i in node 5 of the tree, given the data in k and the model

Note, these probabilities do 
not change as the bases are 

observed in the data!

For a single site pattern k and a 
given tree we compute:

Note, these probabilities DO 
change with i and d, and are 
specified by the substitution 

model!

partial
likelihoods
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1 2

5 3 4

6

A 0

C 1

G 0

T 0

A 0

C 0

G 1

T 0 A 0

C 1

G 0

T 0

A 0

C 1

G 0

T 0

A 0.0009

C 0.0273

G 0.0273

T 0.0009 A

C

G

T

d1 d2

d3
d4

k

1 …C…

2 …G…

3 …C…

4 …C…

For a single site pattern k and a 
given tree:

with dx = 0.1 ∀ x ∈ 1,.., 5{ }, and Pij (0.1) =
0.91 if i = j

0.03 for each i ≠ j

$
%
&

'&

d5

€ 

L5(i) = [L(C) × PiC (d1)] × [L(G) × PiG (d2)],∀ i∈{A,C,G,T}

Calculating tree likelihoods

L5(A) = [1×PAC (0.1)]×[1×PAG (0.1)]
=1×0.03×1×0.03
= 0.0009

L5(C) = [1×PCC (0.1)]×[1×PCG (0.1)]
=1×0.91×1×0.03
= 0.0273

L5(G) and L5(T) are computed analogously

partial
likelihoods
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!" # =
[!& # '()) *& + !& , '(-) *& + !& . '(/) *& + !& 0 '(1) *& ]x

[!2 # '()) *2 + !2 , '(-) *2 + !2 . '(/) *2 + !2 0 '(1) *2 ]x

[!3 # '()) *3 + !3 , '(-) *3 + !3 . '(/) *3 + !3 0 '(1) *3 ] =

[0.0009'0.91 + 0.0273'0.03 + 0.0273'0.03 + 0.0009x0.03]x

[0'0.91 + 1'0.03 + 0'0.03 + 0'0.03]x

[0'0.91 + 1'0.03 + 0'0.03 + 0'0.03] = 0.002484x0.03x0.03 =

0.0000022
A 0.0000022

C

G

T

For a single site pattern k and a 
given tree:

€ 

L6(i) = Lv ( j) × Pij (dv )
j={A ,C ,G,T}
∑

$ 

% 
& 
& 

' 

( 
) 
) v={3,4,5}

∏ ,∀ i∈{A,C,G,T}

1 2

5 3 4

6

A 0

C 1

G 0

T 0

A 0

C 0

G 1

T 0 A 0

C 1

G 0

T 0

A 0

C 1

G 0

T 0

A 0.0009

C 0.0273

G 0.0273

T 0.0009

d1 d2

d3
d4

k

1 …C…

2 …G…

3 …C…

4 …C…

d5

with dx = 0.1 ∀ x ∈ 1,.., 5{ }, and Pij (0.1) =
0.91 if i = j

0.03 for each i ≠ j

$
%
&

'&

Calculating tree likelihoods

*

* Note, the v represents the nodes for which the partial likelihoods have already been computed. The sum indicates that you sum over all possible internal labels. Note, that for leaf nodes the probability of the 
observed nucleotide is 1 and that of the other nucleotides is 0! Hence, for nodes 3 and 4 there is no need to compute a sum!

Likelihood of nucleotide A at node 6 in column k!
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A 0.0000022

C 0.0212954

G 0.0000231

T 0.0000022

For a single site pattern k and a 
given tree:

€ 

L6(i) = Lv ( j) × Pij (dv )
j={A ,C ,G,T}
∑

$ 

% 
& 
& 

' 

( 
) 
) v={3,4,5}

∏ ,∀ i∈{A,C,G,T}€ 

L5(i) = [L(C) × PiC (d1)] × [L(G) × PiG (d2)],∀ i∈{A,C,G,T}

1 2

5 3 4

6

A 0

C 1

G 0

T 0

A 0

C 0

G 1

T 0 A 0

C 1

G 0

T 0

A 0

C 1

G 0

T 0

A 0.0009

C 0.0273

G 0.0273

T 0.0009

d1 d2

d3
d4

k

1 …C…

2 …G…

3 …C…

4 …C…

d5

with dx = 0.1 ∀ x ∈ 1,.., 5{ }, and Pij (0.1) =
0.91 if i = j

0.03 for each i ≠ j

$
%
&

'&

Calculating tree likelihoods

L(k ) = π i × L6 (i) = 0.005331; mit π i = 0.25∀i ∈ {A,G,C,T}
i={A,C,G,T }
∑

This is the site likelihood of the pattern k given the tree

*

* Note, the v represents the nodes for which the partial likelihoods have already been computed. The sum indicates that you sum over all possible internal labels.
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1 CCG

2 GGC

3 CCC

4 CCC

For an alignment of four
sequences and length m=3 the
likelihood is then1 2

5 3 4

6

CCG GGC

CCC CCC
0.1 0.1

0.1

0.1

0.1

0.005331
0.005331
0.005331

L(T ) = L(k )
k=1

m

∏ = 0.0053312 ×0.005331

= 0.000000152

lnL(T ) = lnL(k ) = −15.7
k=1

m
∑

or the log-likelihood is

Calculating tree likelihoods
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Now that we know how to evaluate the likelihood of any given 
tree, we need to ask how to find the ML tree

Heuristic tree search begins with an initial sub-optimal solution (starting tree)
obtained either via step-wise addition (or using a distance tree) 
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1. Exhaustive Search: evaluates every possible tree and hence an optimal 
solution is guaranteed. Limit: 10-12 taxa

2. Branch and Bound: excludes parts from the tree space from the 
search where the optimal tree cannot be found. Guarantees to find 
the optimal tree. 

3. Heuristics: Can be applied to large taxon sets but does not guarantee 
an optimal solution. Here, stochastic iterative algorithms are used that 
randomly modify a tree and accept the modification if a better tree is 
found.

Maximum Parsimony and Maximum Likelihood only evaluate 
trees and do not reconstruct them! 

Finding the best tree is highly complex!
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Finding the best tree
Evaluate random rearrangements of the starting tree and accept 

new tree if it improves P(D|M,T). Continue until convergence.

our goal!
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Tree rearrangements in RAxML*

Stamatakis et al. 2008 Syst Biol 57:758-771
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Lazy subtree rearrangement in RaxML

Stamatakis et al. 2008 Syst Biol 57:758-771

Prune subtree
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Subtree pruning and regrafting
(a single iteration)

Stamatakis et al. 2008 Syst Biol 57:758-771; LL represents LogLikelihood

Regraft subtree subsequently on all branches to form all alternative topologies ti

for each ti
optimize all branch lengths
if LL(ti) > LL(t0)

set ti to t0
else 

discard ti
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To compute optimal branch lengths do the following after initializing all branch
lengths. 
A. Choose a branch
B. Move the virtual root to an adjacent node
C. Compute all partial likelihoods recursively
D. Adjust the branch length to maximize the likelihood value

Optimizing branch lengths is time consuming due to re-
calculation of all the partial likelihoods



39

Subtree Rearrangement in RAxML
(a single iteration)

*radius of n internal nodes from pruning point. n takes typically values between 5 and 25

Regraft subtree subsequently only on branches up to a certain distance n* to form ti

Rationale: Reduce the search space for better trees (computational speed-up)

n

for each ti
optimize all branch lengths
if LL(ti) > LL(t0)

set ti to t0
else 

discard ti
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Lazy Subtree Rearrangement in RAxML
(a single iteration)

for each ti
optimize lengths of 3 neighboring branches x,y,z
compute ALL(ti)

store ti and ALL(ti) for later
analysis

Regraft subtree subsequently on all branches up to a certain distance n to form ti

1

Tree ALL

t1 ALL(t1)

x

y

z

Rationale: Reduce computational burden by computing only Approximate Log Likelihoods (ALL)
to rapidly pre-screen for promising topologies.
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Lazy Subtree Rearrangement in RAxML

Regraft subtree subsequently on all branches up to a certain distance n to form ti

1
2

3

6

5
4

7 9

8

11

12
10

Tree ALL

t1 ALL(t1)

t2 ALL(t2)

t3 ALL(t3)

t4 ALL(t4)

t5 ALL(t5)

t6 ALL(t6)

t7 ALL(t7)

t8 ALL(t8)

t9 ALL(t9)

t10 ALL(t10)

t11 ALL(t11)

t12 ALL(t12)

for each ti
optimize lengths of 3 neighboring branches x,y,z
compute ALL(ti)

store ti and ALL(ti) for later
analysis

Rationale: Reduce computational burden by computing only Approximate Log Likelihoods (ALL)
to rapidly pre-screen for promising topologies.
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Lazy Subtree Rearrangement in RAxML

Sort list of ti according to ALL(ti)

1
2

3

6

5
4

7 9

8

11

12
10

Tree ALL

t1 ALL(t1)

t2 ALL(t2)

t9 ALL(t9)

t7 ALL(t7)

t5 ALL(t5)

t6 ALL(t6)

t4 ALL(t4)

t8 ALL(t8)

t3 ALL(t3)

t10 ALL(t10)

t11 ALL(t11)

t12 ALL(t12)

for each ti with rank < x in the ALL list
optimize all branch lengths

desc. ALL

*x typically set to 20

x*

Tree LL

t1 LL(t1)

t2 LL(t2)

t9 LL(t9)

t7 LL(t7)

t5 LL(t5)

t6 LL(t6)

t4 LL(t4)

and choose the x best trees for thorough optimization

Rationale: Reduce computational burden by computing only Approximate Log Likelihoods (ALL)
to rapidly pre-screen for promising topologies.

if LL(ti) > LL(t0)
set ti to t0

else 
discard ti
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Lazy Subtree Rearrangement in RAxML
Likelihood Cutoff Heuristics

Regraft subtree subsequently on all branches up to a certain distance n to form ti

1
2

3

6

5
4

7 9

8

11

12
10

Tree ALL

t1 ALL(t1)

t2 ALL(t2)

t3 ALL(t3)

t4 ALL(t4)

t5 ALL(t5)

t6 ALL(t6)

t7 ALL(t7)

t8 ALL(t8)

t9 ALL(t9)

t10

t11

t12

for each ti
optimize lengths of 3 neighboring branches x,y,z
compute ALL(ti)

store ti and ALL(ti) for later
analysis
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Thus, if the approximate log likelihood all (tʹ) 
for the rearranged tree tʹ is worse than the log 
likelihood ll (t) of the currently best tree t and 
if the difference δ(all (tʹ), ll(t)), where δ(x, 
y)=x−y, is larger than a certain—dynamically 
determined—threshold lhcutoff, the remaining 
LSRs beyond that node are omitted. 



45

Lazy Subtree Rearrangement in RAxML
Likelihood Cutoff Heuristics

Regraft subtree subsequently on all branches up to a certain distance n to form ti

1
2

3

6

5
4

7 9

8

11

12
10

Tree ALL

t1 ALL(t1)

t2 ALL(t2)

t3 ALL(t3)

t4 ALL(t4)

t5 ALL(t5)

t6 ALL(t6)

t7 ALL(t7)

t8 ALL(t8)

t9 ALL(t9)

t10 ALL(t10)

t11 -

t12 -

Rationale: Don’t evaluate beyond a point where a good tree is most likely not to be found. In 
other words, if t10 is already bad there is no need to evaluate t11 or t12 belonging to the same 
clade.

determine ALL(t10)
if ALL(t10) < LL(t0) AND
|ALL(t10) – LL(t0)| > lhcutoff*
stop evaluation for this clade
else proceed with t11

*lhcutoff is dynamically determined
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Lazy Subtree Rearrangement in RAxML
Likelihood Cutoff Heuristics

Determining dynamically the likelihood cutoff value lhcutoff
Iteration 1:
1. initialize lhcutoff with ∞ 
2. perform a full descent into all alternative topologies within rearrangement distance 

n
3. for each alternative tree topology ti compute di=|ALL(ti) – LL(t0)|
4. compute lhcutoff as

lhcutoff = di /m
i=1

m

∑
where m  is the number of evaluated alternative topologies

Iteration k > 1:
1. set lhcutoff to the value determined in iteration k-1
2. for all clades

1. evaluate alternative tree topologies ti at increasing rearrangement distance from t0
2. compute di=|ALL(ti) – LL(t0)| and stop descent into clade when di > lhcutoff

3. update lhcutoff
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How stable is my tree?
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tt t t t t t t t tt t t t t t t t

€ 

L t | s→ # s ( ) =Π
i=1

m
π si

× Psi # s i
(t)( )

S‘: GATCCTGAGAGAAATAAAC

S: GGTCCTGACAGAAATAAAC

*watch out, products of probabilities become small very quckly. We therefore compute typically in log scale, hence the log-likelihoods

Log-Likelihood surface under JC69

time (in subst. per site)

Remember: Our assumption, thus far, was that all columns in our alignment 
share the same evolutionary history

(here denoted by the same time t for each site)

Multiply ‘site-likelihoods’ across all m positions of the alignment! 
The underlying assumption is: All positions evolved according to 
the same tree!

t
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Resampling methods for assessing the support of a tree 
given the data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Rationale: All positions in a sequence, and hence all alignment columns, should have the 
same evolutionary history. Thus, it should in principle not matter which subset of the data I 
am using for tree reconstruction if the phylogenetic signal is sufficiently strong and indeed 
consistent.

S1

S2

S3

S4
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Resampling methods for assessing the support of a tree 
given the data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Rationale: All positions in a sequence, and hence all alignment columns, should have the 
same evolutionary history. Thus, it should in principle not matter which subset of the data I 
am using for tree reconstruction if the phylogenetic signal is sufficiently strong and indeed 
consistent. 

S1

S2

S3

S4
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Resampling methods for assessing the support of a tree 
given the data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Rationale: All positions in a sequence, and hence all alignment columns, should have the 
same evolutionary history. Thus, it should in principle not matter which subset of the data I 
am using for tree reconstruction if the phylogenetic signal is sufficiently strong and indeed 
consistent. 

S1

S2

S3

S4
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Resampling methods for assessing the support of a tree 
given the data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Rationale: All positions in a sequence, and hence all alignment columns, should have the 
same evolutionary history. Thus, it should in principle not matter which subset of the data I 
am using for tree reconstruction if the phylogenetic signal is sufficiently strong and indeed 
consistent. 

S1

S4

S3

S2
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Resampling methods for assessing the support of a tree 
given the data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Rationale: All positions in a sequence, and hence all alignment columns, should have the 
same evolutionary history. Thus, it should in principle not matter which subset of the data I 
am using for tree reconstruction if the phylogenetic signal is sufficiently strong and indeed 
consistent. 
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Resampling methods for assessing the support of a tree 
given the data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Observation: The phylogenetic signal in the data is apparently not entirely consistent and we 
would like to have a method to assess the extent of variability.

S1

S4

S3

S2

S1

S2

S3

S4

6 x 1 x

S1

S2

S3

S4

2 x
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Resampling methods for assessing the support of a tree 
given the data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Approach 1 – Jackknife: Remove a random subset of alignment columns and re-compute the 
tree. Typically a 50% Jackknife analysis is performed.

S1

S4

S3

S2
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Resampling methods for assessing the support of a tree 
given the data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Approach 1 – Jackknife: Remove a random subset of alignment columns and re-compute the 
tree. Typically a 50% Jackknife analysis is performed.

S1

S2

S3

S4
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Resampling methods for assessing the support of a tree 
given the data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Approach 1 – Jackknife: Remove a random subset of alignment columns and re-compute the 
tree. Typically a 50% Jackknife analysis is performed.

S1

S2

S3

S4
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S1

S4

S3

S2

S1

S2

S3

S4

Resampling methods for assessing the support of a tree 
given the data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Approach 1 – Jackknife: Remove a random subset of alignment columns and 
re-compute the tree. Typically a 50% Jackknife analysis is performed.

S1

S2

S3

S4

repeat
n* times

*n is typically 100 or 1000

JN1

JN99
JN100

S1

S2

S3

S4

76**

**value is typically given in percent
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Resampling methods for assessing the support of a tree 
given the data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Approach 2 – Bootstrap: Resample randomly chosen columns from the 
original alignment (with replacement) to obtain a new alignment with the 
same length as the original alignment.

repeat
n* times

Taxon 1 1 4 4 7 7 1 5 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Taxon 7 7 9 8 5 6 7 1 2

S1 G G T T C T G C G

S2 C C T T C T C C G

S3 G G T C C T G T G

S4 G G T C C T G C G

Taxon 4 4 4 4 4 4 4 4 4

S1 G G G G G G G G G

S2 A A A A A A A A A

S3 A A A A A A A A A

S4 G G G G G G G G G

Taxon 6 5 2 9 6 1 6 8 9

S1 T C G T T C T T T

S2 T C G T T C T T T

S3 T C G T T T T C T

S4 T C G T T C T C T

*n is typically 100 or 1000
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Resampling methods for assessing the support of a tree 
given the data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Approach 2 – Bootstrap: Resample randomly chosen columns from the 
original alignment (with replacement) to obtain a new alignment with the 
same length as the original alignment.

repeat
n* times

Taxon 1 1 4 4 7 7 1 5 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Taxon 7 7 9 8 5 6 7 1 2

S1 G G T T C T G C G

S2 C C T T C T C C G

S3 G G T C C T G T G

S4 G G T C C T G C G

S1

S4

S3

S2

S1

S2

S3

S4

S1

S2

S3

S4BS1

BS99
BS100

S1

S2

S3

S4

89**

*n is typically 100 or 1000 **value is typically given in percent
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Rapid bootstrapping in RAxML

Compute MP starting tree
and

optimize model parameters

generate BS sample 0
and

infer replicate tree 0

RBS search finished
100 BS trees

ORIGINAL ALIGNMENT BOOTSTRAP REPLICATES

generate BS sample 9
and

infer replicate tree 9

generate BS sample 1
and

infer replicate tree 1

use final tree of replicate 0 as 

starting tree for replicate 1

Compute MP tree

Reload original alignment to
compute new starting tree

generate BS sample 10
and

infer replicate tree 10

generate BS sample 11
and

infer replicate tree 11

generate BS sample 19
and

infer replicate tree 19

use final tree of replicate 10 as 

starting tree for replicate 11

generate BS sample 99
and

infer replicate tree 99

1. Model parameters 

estimated only once

2. Bootstrap trees start from 

10 different MP trees 

(avoid local optima)

3. Dependency in BS tree 

computation due to using 

final tree of BS replicate as 

starting tree for next 

replicate

4. rough approximation of 

substitution rate 

heterogeneity across sites 

(CAT model)

5. n in LSR1 is set randomly to 

values between 5 and 15

6. only 2 LSR iterations

7. use a stricter lhcuttoff (50%)

8. evaluate only 5 best trees 

after LSR

9. speed improvement of 

~20x

use final tree of replicate 8 as 

starting tree for replicate 9

use final tree of replicate 18 as 

starting tree for replicate 19

1 Lazy Subtree pruning and Regrafting
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The last step of rapid bootstrapping is the inference of the 
ML tree

RBS search finished
100 BS trees

ORIGINAL ALIGNMENT BOOTSTRAP REPLICATES

CAT*

*CAT and GAMMA are two different ways to account for substitution rate heterogeneity across sites where GAMMA is the more complex one

Thorough LSR search

ML tree

10 best trees selected

FAST ML search using every 
5th BS as starting tree

Best tree

Slow ML search

GAMMA*
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Modeling Substitution rate heterogeneity across sites

How to account for conserved/slowly evolving positions in the substitution model?
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Modeling rate across sites
Revisiting substitution models

€ 

Q =

− a b c
a − d e
b d − f
c e f −

# 

$ 

% 
% 
% 
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' 

( 
( 
( 
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A C G T It is a convention 
to set the 
diagonal entries 
qii such that the 
rows sum up to 0. 
Thus, 

qii = − qij
j≠i
∑

However, this model  assumes that all sites in a 
sequence, or all columns in an alignment evolve with the 
same relative rate. Note, that we can rewrite the total 
rate for a given position as

qi = qij
j≠i
∑

We can now introduce a neutral parameter r=1 such that 
can re-write qi as qi*r
For a sequence of L characters we have now the 
possibility to give the parameter r for l=1…L a site specific 
value rl.

We re-scale the substitution rate 
in a site-specific manner, i.e. the 
substitution rate at a position l is 
qirl
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Modeling rate across sites
Common approaches

Continuous Gamma distribution with a mean of 1*. 
Note that the parameter a determines the shape of the 
distribution. 
(Problem of over-parameterization and over-fitting)

*Thus, if I choose randomly from this distribution, the overall rate will not change!; **Z. Yang (1994) J Mol Evol 39:306

308 

The Discrete Gamma Model.  We use k categories to approximate 
the gamma distribution, with equal probability 1/k in each category. 
The density function of the gamma distribution G(c~,[3) is 

g ( r ; c ~ , [ 3 ) = ~ e x p { - ~ r } . r  ~ a, 0 < r < ~  (8) 

with mean E(r) = c~/[3 and variance V(r) = ct/[32. We note that when 
r -- G(c~,[3), cr ~ G(ct,[3/c). The gamma distribution with 13 = J/z re- 
duces to the Z2 distribution, that is, G(ot, I/2) --- X2(2c0. Using these re- 
lationships, we can calculate the percentage point (the cutting point) 
of the gamma distribution, i.e., the value of z such that Prob{r < z} 
= p where r ~ G(c~,13), as follows: 

zo(P,'Ct, 13) = z×2(p;2a)/(213) (9) 

where zx2(p;v) is the percentage point of the Z 2 distribution with v de- 
grees of freedom, which can be calculated by, say, the algorithm of 
Best and Roberts (1975). 

The range of r, (0,~), is cut into k categories by k - 1 percent- 
age points corresponding to p = 1/k, 2/k, . . . .  (k - 1)/k. The rate in 
each category can then be represented by the mean of the portion of 
the gamma distribution falling in the category. Suppose that the two 
cutting points of category i are a and b. Then the rate for category i 
can be obtained as 

4 ,  

3 

t(O 2 

0 7 - -  . . . .  

0 0,5 1 1.5 2 

r 

Fig. 1. Discrete approximation to the gamma distribution G(ct,[3), 
with ct = [3 = l/2. Four categories are used to approximate the con- 
tinuous distribution, with equal probability for each category. The 
three boundaries are 0.1015, 0.4549, and 1.3233, which are the per- 
centage points corresponding to p = 1/4, z14, 3/4. The means of the four 
categories are 0.0334, 0.2519, 0.8203, 2.8944. The medians are 
0.0247, 0.2389, 0.7870, 2.3535, and these are scaled to get 0.0291, 
0.2807, 0.9248, and 2.7654, so that the mean of the discrete distri- 
bution is one. 

ri = f ; r  g(r,'a,~) d r l f  g(r,'c~,13) dr 

= a/[3 [I(b13,c~ + 1) - l(a[3,ct + 1)](l/k) (10) 

where l(z, cQ = [1/F(c0] f~ exp { -x}  • x a - l d x  is the incomplete gam- 
ma ratio, which can be calculated, say, using the algorithm of Bhat- 
tacharjee (1970). 

If we use the median instead of the mean to represent the average 
rate, r i can be calculated as the percentage points corresponding to p 
= l/(2k), 3/(2k) . . . . .  (2k - l)/(2k). In the current context, the scale 
parameter 13 is redundant and can be set equal to c~ so that the mean 
of the distribution is one (Yang 1993). The discrete distribution needs 
also to be scaled so that the mean is one if the median is used. An ex- 
ample is given in Fig. 1, with ct = [3 = 1/2, in which case the gamma 
distribution is really the ~2 distribution with one degree of freedom. 

When the average rate for each category is determined, the prob- 
ability of observing data x at any site can be obtained as 

f (x)  = -~ . f (x lr  = ri) (11) 
i= l  

The conditional probability of observing x, given that the rate for the 
site is r = r e is given by Yang (1993). As the postorder tree traver- 
sal algorithm of Felsenstein (1981) can be used to calculatef(x[r = 
ri) , the computational requirement of the discrete gamma model is 
roughly k times that of Felsenstein's (1981) single-rate model. The 
continuous model was represented as, i.e., F84 + F (Yang et al. 
1994), and we therefore represent the discrete gamma model as, i.e., 
F84 + dG. The discrete gamma model with k = 4, the value to be rec- 
ommended, will be designated F84 + dG4. 

It may be pointed out that the value of r i, which max imizes f ( x l r  
= r~) in Eq. 11, can be used as the best predictor of the rate for the 
site. 

The Fixed-Rates  Model. With this model, substitution rates at 
sites are predicted using the method of Yang and Wang (in press), as- 
suming the star tree and the gamma distribution for rates over sites. 
This method takes advantage of the observation that parameter esti- 
mates and predicted rates are more-or-less stable across tree topolo- 
gies (Yang et at. 1994; Yang and Wang in press). Rates, and their cor- 
responding sites, are then classified into k = 4 categories, (0,1), (1,1 
+ c0, (1 + o, 1 + 2c0, and (1 + 2o,0*), with o = (1/(~) ~2, where 
is the estimated shape parameter of the gamma distribution. This 
scheme of classification is very poor if taken as an approximation to 
the gamma distribution, as the first category covers most of the sites. 

It, however, reflects the discrete nature of the data; with a typical da- 
ta set, the four site patterns that are represented by identical nu- 
cleotides in all the species cover most of the sites, and most often pre- 
dicted rates lbr those sites only are less than one, the average. The rate 
for the ith category, ~, is obtained by averaging the predicted rates 
for sites in the category. The probability of observing data x at a site 
from the ith category is calculated as 

f (x)  = f (Mr  = ?i) (12) 

In this formulation, rates at sites are not regarded as random vari- 
ables; they are constants or parameters. Biologically, if we knew 
which category a site should belong to, such as in the case of the three 
codon positions in protein coding sequences, or if we knew whether 
a site was located in a highly variable region or in a very conserved 
region, such information could be used. When we lack such infor- 
mation, a good guess, as provided by the method of Yang and Wang 
(in press), may be used. Mathematically, the contribution to f(x) from 
categories other than the most probable may be very small and may 
therefore be ignored. 

Several alternatives seem possible concerning the implementation 
of this method. Possibilities and problems concerning the estimation 
of the c~ parameter will be discussed later. It is possible to use the rates 
obtained from the star tree and the continuous gamma distribution on- 
ly to classify the sites, while rates for site classes can be estimated 
by the likelihood function based on Eq. 12. Parameter ~: can also be 
estimated this way. It is not very clear which options will produce 
good performance. In this study, the average rates for site classes, ~, 
and parameter ~; are all obtained from the star tree under the contin- 
uous gamma model, as this saves computation. Calculation of the like- 
lihood under this model, that is, based on Eq. 12, involves roughly the 
same amount of computation as that of Felsenstein's (1981) single- 
rate model. 

Data. We choose three data sets for which rates of substitution are 
clearly variable over sites, while other aspects, such as the amount of 
evolution as reflected in branch lengths in the tree, and the transition/ 
transversion rate bias, are quite different• For sequences such as 
pseudogenes or "junk" DNA, for which rates are more-or-less 
constant over sites, the methods considered in this paper are not use- 
ful. 

The mtDNA Sequences f rom  Primates. The 895-bp mtDNA se- 
quences of human, chimpanzee, gorilla, orangutan, and gibbon (Brown 

**
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Modeling rate across sites
Common approaches

Continuous Gamma distribution with a mean of 1*. 
Note that the parameter a determines the shape of the 
distribution. 
(Problem of over-parameterization and over-fitting)

*Thus, if I choose randomly from this distribution, the overall rate will not change!; **Z. Yang (1994) J Mol Evol 39:306

308 

The Discrete Gamma Model.  We use k categories to approximate 
the gamma distribution, with equal probability 1/k in each category. 
The density function of the gamma distribution G(c~,[3) is 

g ( r ; c ~ , [ 3 ) = ~ e x p { - ~ r } . r  ~ a, 0 < r < ~  (8) 

with mean E(r) = c~/[3 and variance V(r) = ct/[32. We note that when 
r -- G(c~,[3), cr ~ G(ct,[3/c). The gamma distribution with 13 = J/z re- 
duces to the Z2 distribution, that is, G(ot, I/2) --- X2(2c0. Using these re- 
lationships, we can calculate the percentage point (the cutting point) 
of the gamma distribution, i.e., the value of z such that Prob{r < z} 
= p where r ~ G(c~,13), as follows: 

zo(P,'Ct, 13) = z×2(p;2a)/(213) (9) 

where zx2(p;v) is the percentage point of the Z 2 distribution with v de- 
grees of freedom, which can be calculated by, say, the algorithm of 
Best and Roberts (1975). 

The range of r, (0,~), is cut into k categories by k - 1 percent- 
age points corresponding to p = 1/k, 2/k, . . . .  (k - 1)/k. The rate in 
each category can then be represented by the mean of the portion of 
the gamma distribution falling in the category. Suppose that the two 
cutting points of category i are a and b. Then the rate for category i 
can be obtained as 
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Fig. 1. Discrete approximation to the gamma distribution G(ct,[3), 
with ct = [3 = l/2. Four categories are used to approximate the con- 
tinuous distribution, with equal probability for each category. The 
three boundaries are 0.1015, 0.4549, and 1.3233, which are the per- 
centage points corresponding to p = 1/4, z14, 3/4. The means of the four 
categories are 0.0334, 0.2519, 0.8203, 2.8944. The medians are 
0.0247, 0.2389, 0.7870, 2.3535, and these are scaled to get 0.0291, 
0.2807, 0.9248, and 2.7654, so that the mean of the discrete distri- 
bution is one. 

ri = f ; r  g(r,'a,~) d r l f  g(r,'c~,13) dr 

= a/[3 [I(b13,c~ + 1) - l(a[3,ct + 1)](l/k) (10) 

where l(z, cQ = [1/F(c0] f~ exp { -x}  • x a - l d x  is the incomplete gam- 
ma ratio, which can be calculated, say, using the algorithm of Bhat- 
tacharjee (1970). 

If we use the median instead of the mean to represent the average 
rate, r i can be calculated as the percentage points corresponding to p 
= l/(2k), 3/(2k) . . . . .  (2k - l)/(2k). In the current context, the scale 
parameter 13 is redundant and can be set equal to c~ so that the mean 
of the distribution is one (Yang 1993). The discrete distribution needs 
also to be scaled so that the mean is one if the median is used. An ex- 
ample is given in Fig. 1, with ct = [3 = 1/2, in which case the gamma 
distribution is really the ~2 distribution with one degree of freedom. 

When the average rate for each category is determined, the prob- 
ability of observing data x at any site can be obtained as 

f (x)  = -~ . f (x lr  = ri) (11) 
i= l  

The conditional probability of observing x, given that the rate for the 
site is r = r e is given by Yang (1993). As the postorder tree traver- 
sal algorithm of Felsenstein (1981) can be used to calculatef(x[r = 
ri) , the computational requirement of the discrete gamma model is 
roughly k times that of Felsenstein's (1981) single-rate model. The 
continuous model was represented as, i.e., F84 + F (Yang et al. 
1994), and we therefore represent the discrete gamma model as, i.e., 
F84 + dG. The discrete gamma model with k = 4, the value to be rec- 
ommended, will be designated F84 + dG4. 

It may be pointed out that the value of r i, which max imizes f ( x l r  
= r~) in Eq. 11, can be used as the best predictor of the rate for the 
site. 

The Fixed-Rates  Model. With this model, substitution rates at 
sites are predicted using the method of Yang and Wang (in press), as- 
suming the star tree and the gamma distribution for rates over sites. 
This method takes advantage of the observation that parameter esti- 
mates and predicted rates are more-or-less stable across tree topolo- 
gies (Yang et at. 1994; Yang and Wang in press). Rates, and their cor- 
responding sites, are then classified into k = 4 categories, (0,1), (1,1 
+ c0, (1 + o, 1 + 2c0, and (1 + 2o,0*), with o = (1/(~) ~2, where 
is the estimated shape parameter of the gamma distribution. This 
scheme of classification is very poor if taken as an approximation to 
the gamma distribution, as the first category covers most of the sites. 

It, however, reflects the discrete nature of the data; with a typical da- 
ta set, the four site patterns that are represented by identical nu- 
cleotides in all the species cover most of the sites, and most often pre- 
dicted rates lbr those sites only are less than one, the average. The rate 
for the ith category, ~, is obtained by averaging the predicted rates 
for sites in the category. The probability of observing data x at a site 
from the ith category is calculated as 

f (x)  = f (Mr  = ?i) (12) 

In this formulation, rates at sites are not regarded as random vari- 
ables; they are constants or parameters. Biologically, if we knew 
which category a site should belong to, such as in the case of the three 
codon positions in protein coding sequences, or if we knew whether 
a site was located in a highly variable region or in a very conserved 
region, such information could be used. When we lack such infor- 
mation, a good guess, as provided by the method of Yang and Wang 
(in press), may be used. Mathematically, the contribution to f(x) from 
categories other than the most probable may be very small and may 
therefore be ignored. 

Several alternatives seem possible concerning the implementation 
of this method. Possibilities and problems concerning the estimation 
of the c~ parameter will be discussed later. It is possible to use the rates 
obtained from the star tree and the continuous gamma distribution on- 
ly to classify the sites, while rates for site classes can be estimated 
by the likelihood function based on Eq. 12. Parameter ~: can also be 
estimated this way. It is not very clear which options will produce 
good performance. In this study, the average rates for site classes, ~, 
and parameter ~; are all obtained from the star tree under the contin- 
uous gamma model, as this saves computation. Calculation of the like- 
lihood under this model, that is, based on Eq. 12, involves roughly the 
same amount of computation as that of Felsenstein's (1981) single- 
rate model. 

Data. We choose three data sets for which rates of substitution are 
clearly variable over sites, while other aspects, such as the amount of 
evolution as reflected in branch lengths in the tree, and the transition/ 
transversion rate bias, are quite different• For sequences such as 
pseudogenes or "junk" DNA, for which rates are more-or-less 
constant over sites, the methods considered in this paper are not use- 
ful. 

The mtDNA Sequences f rom  Primates. The 895-bp mtDNA se- 
quences of human, chimpanzee, gorilla, orangutan, and gibbon (Brown 

**

Likelihood based tree reconstruction methods assign each position in the alignment 
either its own relative rate (Gamma model) or assigns it to a given rate category. In the 
latter case you are asked how many rate categories you want to use (values range 
typically between 4 and 12). 
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Approximate speed-up of the Rapid Bootstrap Method
762 SYSTEMATIC BIOLOGY VOL. 57

TABLE 1. Experimental data used and execution time comparison
between RBS (rapid bootstrap) and SBS (standard bootstrap). Column
#SEQS indicates the number of sequences, #PATT the number of dis-
tinct patterns in the alignment that correspond to the length of the
likelihood vectors and compute-intensive for-loops, % Gaps the per-
centage of completely undetermined character states (e.g., N,O,X,?,-
for DNA data) in an ML context, SBS(hrs) indicates the execution time
of SBS in hours for 100 BS replicates, RBS(hrs) the execution time for
100 RBS searches, and Speedup the acceleration achieved by RBS.

# SEQS # PATT % Gaps SBS (hrs) RBS (hrs) Speedup

d125 19,436 32.72 128.45 10.52 12.21
d140 AA 1,041 0.60 51.80 5.17 10.02
d140 AA P 1,057 0.60 63.55 5.34 11.89
d150 1,130 4.77 5.31 0.37 14.46
d218 1,846 35.33 18.33 1.18 15.49
d354 348 14.71 4.45 0.30 14.63
d404 7,429 78.92 236.10 16.91 13.96
d404 P 7,444 78.92 259.23 24.08 10.77
d500 1,193 2.48 31.09 1.86 16.72
d628 1,033 36.44 26.47 1.88 14.11
d714 1,231 5.83 48.32 2.86 16.89
d775 AA 3,838 19.35 2673.74 332.67 8.04
d994 3,363 71.39 255.25 14.72 17.34
d1288 1,132 7.53 218.06 14.63 14.91
d1481 1,241 26.58 137.28 9.09 15.10
d1512 1,576 3.02 198.44 13.43 14.77
d1604 1,275 5.71 159.23 8.61 18.48
d1908 1,209 58.38 224.72 12.05 18.64
d2000 1,251 12.98 422.23 21.02 20.08
d2308 1,184 12.71 379.01 28.68 13.21
d2554 1,232 5.81 386.04 29.39 13.13
d4114 1,263 2.00 583.58 39.09 14.93
d6718 1,122 20.87 1235.75 76.02 16.26
d7764 851 20.60 1273.77 72.90 17.47
Averages 2,655 23.26 375.84 30.95 14.73

Rapid ML Search
The accelerated ML search procedure, which is ex-

ecuted after the RBS search, was designed using an
analogous algorithmic engineering approach. The ML
search is executed after the RBS inference because the
ML search can be accelerated by using tree topologies
inferred during the RBS phase (see below). Thus, once
the RBS analyses are finished, the program reloads the
original alignment to conduct an ML search.

Initially, every fifth final RBS tree is used as a starting
tree for a fast ML search (always on the original align-
ment); i.e., if 100 RBS replicates have been computed, 20
fast ML searches will be conducted under GTR+CAT.
After this initial fast search, all 20 final trees are scored
under GTR+! and a more thorough search is applied
to the best-scoring 10 trees. This more thorough search
is once again conducted under GTR+CAT. The final 10
trees of these searches are then scored under GTR+!
again and the best-scoring tree undergoes a final and
more thorough LSR-based optimization under GTR+!.
The thoroughness is due to the usage of a less lazy LSR
mechanism, where a region of branches up to four nodes
beyond the insertion point of a subtree is reoptimized.
The above modifications yield an average speedup of
factor 2.2 compared to 20 standard RAxML searches for
the best-scoring tree.

The RAxML Web Servers
In order to thoroughly test the functionality of

the RAxML Web servers prior to submission of the
manuscript, the availability of the prototype at the Vital-
IT unit of the Swiss Institute of Bioinformatics was an-
nounced at the end of August 2007 via Evoldir, the
RAxML mailing list, and was also posted on the iPhylo
blog of Roderic Page (http://iphylo.blogspot.com/).
From September 3, 2007, to May 18, 2008, 7080 jobs
have been submitted from 766 distinct IP addresses. Dur-
ing this period, we fixed several minor bugs and in-
tegrated additional features with the help of the user
community. The main goal of the Web servers is to keep
things as simple as possible; i.e., provide the capabil-
ity to infer trees for nonexpert users, hence the name
RAxML Black Box. On the Vital-IT job submission page
(see http://phylobench.vital-it.ch/raxml-bb/), one can
select between AA- and DNA-based inference, parti-
tioned models with joint and per partition optimization
of branch lengths, usage of a proportion of invariant sites
estimate, and execution of RBS or a combined RBS and
rapid ML search. Analyses can also be conducted with
multifurcating constraint trees or bifurcating backbone
trees (for details see RAxML manual). The server, which
is attached to a 200-CPU cluster located at the Vital-IT
unit of the Swiss Institute of Bioinformatics, will return
the following result files:

• A file containing all RBS trees.
• An extended majority rule RBS consensus tree.
• The RAxML_info.RUN_ID file containing information

on model parameter estimates and execution times.
• The best-scoring ML tree (if ML inference was

selected).
• The best-scoring ML tree with RBS values (if ML

inference was selected).
• Copies of the best-scoring ML tree with individual

branch lengths for each partition (if ML inference
and per partition branch length optimization were
selected).

The consensus and best-scoring ML trees can be
viewed and browsed online by using a customized ver-
sion of the PHY.FI display engine, http://cgi-www.
daimi.au.dk/cgi-chili/phyfi/go (Fredslund, 2006). The
CIPRES RAxML Web server has been set up in an
analogous way (see http://8ball.sdsc.edu:8889/cipres-
web/Bootstrap.do).

Availability: http://icwww.epfl.ch/˜stamatak/index-
Dateien/software/RAxML-VI-HPC-4.0.0.tar.gz

Web Servers: http://phylobench.vital-it.ch/raxml-bb/
http://8ball.sdsc.edu:8889/cipres-web/Bootstrap.do

RESULTS

To test the performance and relative accuracy of RBS
with respect to SBS as well as to BS values obtained
via competing programs, we used 22 real-world AA and

 at U
niversitaetsbibliothek Johann C

hristian Senckenberg on July 8, 2013
http://sysbio.oxfordjournals.org/
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#Seqs: Number of sequences; #PATT: Number distinct patterns; SBS: Standard Bootstrap; RBS: Rapid Bootstrap

Table from Stamatakis et al. 2008 Syst Biol 57:758-771
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Looking at trees via their splits

Each branch of a tree describes a split of OTUs into two sets

These sets correspond to the two clades associated with the branch

e.g. black branch of the tree specifies the split ABCD | EFG
•can also be written ADCB | GFE etc.
•i.e. the taxon lists in the two halves of the split are unordered
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Looking at trees via their splits

Splits are either

trivial
•example: F | ABCDEG
•associated with terminal branches
•provide no information about topology structure

non-trivial
•example:  ABCD | EFG
•associated with internal branches
•provide information about the tree topology



70

Looking at trees via their splits

Complete list of splits described by a tree allows reconstruction of that tree’s topology

D

F

DF | ABCEGHA

E

BCDFGH | AE
ABEGH | CDF

C

BH | ACDEFGB H

G

Helps to consider the sets of clades described by the splits
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Split Compatibility

Sets (e.g. pairs) of splits are either:
compatible
•a tree can be drawn that contains all splits in the set
incompatible
•a tree cannot be drawn that contains all splits in the set

Definition: Two splits W|X and Y|Z are compatible, i.e. not contradictory, if at least 
one intersection of W ∩ Y , 
W ∩ Z , X ∩ Y , X ∩ Z is empty. 
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Sets of trees can be summarized by looking at their split sets: 
Strict Consensus Trees

i ii iii iv v vi vii viii
AB | CDEF * * * * * * * * 8

CD | ABEF * * 2

EF | ABCD * * * * * 5

ABC | DEF * * 2

DE | ABCF * 1
CF | ABED * * 2
ABD | ECF * * * 3
ABF | CDE * 1

A

B

C

D

E

F

(i)
A

B

C D

E

F

(ii)

A

B

D

E

C

F

(vi)
A

B

E D

C

F

(vii)

(iii)
A

B

C

D

E

F

(v)A

B

D

C

E

F

A

B

F

E

C

D

(iv)

A

B

D

C

E

F(viii)

A B

C
D

F E
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Sets of trees can be summarized by looking at their split sets:
50% Majority Rule Consensus Trees

i ii iii iv v vi vii viii

AB | CDEF * * * * * * * * 8

CD | ABEF * * 2
EF | ABCD * * * * * 5
ABC | DEF * * 2
DE | ABCF * 1

CF | ABED * * 2

ABD | ECF * * * 3

ABF | CDE * 1

A

B

C

D

E

F

(i)
A

B

C D

E

F

(ii)

A

B

D

E

C

F

(vi)
A

B

E D

C

F

(vii)

(iii)
A

B

C

D

E

F

(v)A

B

D

C

E

F

A

B

F

E

C

D

(iv)

A

B

D

C

E

F
(viii)

A B

C
D

F E

5

8
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Label the Branches!

Resolving an ancient, rapid radiation in Saxifragales.
Jian S, Soltis PS, Gitzendanner MA, Moore MJ, Li R, Hendry TA, Qiu YL, Dhingra A, Bell CD, Soltis DE.
Syst Biol. 2008 Feb;57(1):38-57.
PMID: 18275001

Branches of 
consensus tree 
labeled to indicate 
proportion of trees 
containing that 
branch/split

http://www.ncbi.nlm.nih.gov/pubmed/18275001?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
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The missing bit: Tree evaluation using Bayes theorem 

So far we have computed

i.e. the likelihood of the data D given the tree T and 
the parameter vector Q.

However, what we are interested in most of the times 
is the likelihood of T and Q given D, i.e.€ 

P(D |Τ,Θ)

€ 

P(Τ,Θ |D)
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The missing bit: Tree evaluation using Bayes theorem 

So far we have computed

i.e. the likelihood of the data D given the tree T and 
the parameter vector Q.

However, what we are interested in most of the times 
is the likelihood of T and Q given D, which is given 
by Bayes’ theorem
€ 

P(D |Τ,Θ)

€ 

P(Τ,Θ |D) =
P(D |Τ,Θ) *P(Τ,Θ)

P(D)

prior information on the probability of a given hypothesis (T, Q) 

total probability of the data considering all hypotheses. This is the problematic bit! 



77fungal relationships. In contrast, the Bayesian consensus
tree (two independent runs, 22,000 generations, maxdiff:
0.09) supports again an evolutionarily early split of the Blas-
tocladiomycetes, Chytridiomycetes, and Neocallimastigo-
mycetes (BPP: 0.9) and a later branching of the
Entomophthoromycotina.

We pursued an extended procedure to address the prob-
lematic splits within the Basidiomycota (region (iv)) and
within the Pezizomycotina (region (vi)), respectively.We first
adapted the core ortholog sets to the particular phylogenetic
problem by choosing the primer taxa only from the subtree
of interest (table 1). From the two resulting core ortholog
collections, we derived the data sets basidiomycota_1 and
pezizomycotina_1, respectively, and used them for phylog-
eny reconstruction. The subtree of the Basidiomycota (fig. 5)
recovers the five major basidiomycete taxa represented in
our data as monophyletic clades. In addition, it now confi-
dently resolves also the phylogenetic position of the smut
fungi as sister to the Agaricomycetes/Tremellomycetes
(MLBS: 93; Bayesian posterior probability [BPP]: 1). The sit-
uation proved to be more difficult for the Pezizomycotina.
The major clades are again resolved in congruency to the
backbone phylogeny. However, the position of the Dothideo-
mycetes still remained unclear. In the ML tree, they are
placed as sister to the Eurotiomycetes (MLBS: 56; supple-
mentary fig. S7A, Supplementary Material online), whereas

in the corresponding Bayesian analysis (two independent
runs, 70,000 generations, maxdiff: 0.01), a grouping of
the Dothideomycetes with Agaricomycetes and Leotiomy-
cetes is seen (BPP: 0.8; supplementary fig. S7B, Supplemen-
tary Material online). Thus, even with this refined and
comprehensive data set (162 genes and 64 taxa), the exact
position of this group is not resolvable.

Revisiting the Position of the Dothideomycetes
(Region vi)
The internal branch determining the position of the Dothi-
deomycetes within the Pezizomycotina is extremely short
(;1 substitution per 100 sites; cf. supplementary figs. S5–
S7, Supplementary Material online). This suggests that the
diversification of the Leotiomycetes/Sordariomycetes, the
Dothideomycetes, and the Eurotiomycetes from their
shared common ancestor occurred in close temporal suc-
cession. Slowly evolving proteins, which are prevalent in the
pezizomycotina_1 set (supplementary fig. S8, Supplemen-
tary Material online), may lack the phylogenetic signal to
confidently resolve this branch. We investigated this pos-
sibility by considering all 1,226 single-copy genes in the pe-
zizomycotina core ortholog set distinguishing seven
categories from slowly (pezizomycotina_3) to quickly
evolving proteins (pezizomycotina_9). The taxon sampling

FIG. 4. The deep-level relationships of the fungi inferred from 46 slowly evolving single-copy genes (data set fungi_3). Shown is the Bayesian
consensus tree. The Blastocladiomycota are placed into a monophyletic clade together with the core chytrids. Branch support values represent
ML bootstrap support and Bayesian posterior probabilities, respectively. ‘‘-’’ and ‘‘!’’ represent unresolved and conflictingly resolved splits in the
ML tree, respectively. An * denotes 100% bootstrap support or a Bayesian posterior probability of 1. Names of taxa represented by genome
sequences are written in capital letters, and names of taxa represented by ESTs are written in lower case.

Consistency-Based Phylogenomics · doi:10.1093/molbev/msr285 MBE
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 by Ingo Ebersberger on M
ay 3, 2012

http://m
be.oxfordjournals.org/
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Posterior probabilities from Bayesian tree searches and 
ML bootstrap values have different meanings!

ML BS

BPP


