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A tree is an evolutionary hypothesis

A tree is a directed graph consisting of a
set of nodes and an set of edges (no
cycles possible)

Typically we constrain trees to consist of
nodes with indegree of 1 and outdegree
of O (leafs) or 2 (exception: root node)
Trees can be rooted (time!) or unrooted




Revisiting simulating protein sequence evolution
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Evolved sequences as leafs of tree

! Jain etal. (2019) GBE 11:531-545



Why are functionally equivalent proteins not identified as
homologs? The yeast and human RNase MRP complexes involved in
rRNA processing
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1 Sequences in two species that evolve the same time independent from each other as the species



Why are functionally equivalent proteins not identified as
homologs? The yeast and human RNase MRP complexes involved in
rRNA processing
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The simulation of time dependent sequence change
using the Gillespie algorithm?

A <- AdeI + Ains + Asubst

Initialization: Initialize the number of evolving Lrem =1
positions in the system, event types, event tw ~ Exp(A)
rates, simulation time, and random number while t,, < t,.,, do
generators. randVar ~ Unif (0,1)
Monte Carlo step: Generate random numbers If randVar < A,../A then
to dgtermme the next event t.o. occur as.. well as dolnsertion()
the time interval. The probabl.llty of a .glven else if randVar < (Ains + Adel) / A then
event to be chosen is proportional to its event .

doDeletion()
rate.
Update: Increase the time step by the else

paate: Hme y doSubstitution()
randomly generated time in Step 2. Update the dif
endi

event rate based on the event that occurred.
Iterate: Go back to Step 2 unless the A = updateEventRate()

simulation time has been exceeded. t o<t -t
rem rem w

tw ~ Exp(A)

end while .

Gillespie, Daniel T. (1977). "Exact Stochastic Simulation of Coupled Chemical Reactions". The Journal of Physical Chemistry. 81 (25): 2340-2361




Modelling the substitution process in a step-wise manner

Total Event rate Ager + Ains + Agupst

\ Individual event rates for
—

insertion, deletion, and

B
A

\
|

(0]
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Time we still have in front of us w “IExp(A) substitution
while t <tN ial distributi
Waiting time for the next event / W= Ex.ponentlal distribution
randVar ~|Unif (0,1) with parameter A
If randVar < A;,i/A then Uniform distribution

dolnsertion()
else if randVar < (Ains + Adel) / A then
doDeletion()
else
doSubstitution()

end if
A = updateEventRate()
<- trem - tw

t,, ~ Exp(A)

end while

trem




Computing Event rates
Adel and Ains

Given a sequence of length L drawn at random from the Alphabet A={A,G,C,T} with

frequencies g, = i,Vi e{A,C,G,T}

Be A4 the deletion rate per position, and A, the insertion rate per position, the we
compute the event rates for deletions as

Agel = Lhge How long should an insertion or a
deletion be?
(i.e. what is the probability

and likewise the event rate for insertions as function modeling the insertion
and deletion length distribution?)

Ajns = (L+1)Ajn And how to compute A, ;?

Now it is already easy to see why in our simulation algorithm we have to update both
event rates after each modification of the sequence as both insertions and deletions
modify L.




Computing Event rates
A

subst

Given a sequence of length | drawn at random from the Alphabet A={A,G,C, T} with

frequencies g, = i,Vi e{A,C,G,T}

1. Markov chain of first order The
evolutionary process has no memory, i.€.

Sl e .AAGGCTTCAG... sequence S, evolves to S; in time t,

independent from S,

Time t, .
2. Stationary
S2 . AAGGCCTCAG... The freq.uency. m; of the nucleotides
oder amino acids do not change.
Time t,,, 3. time-reversible

S;3:... ATGGACTCAG... T * Qi = qji ° T




The rate matrix Q provides the rates for the 12 possible
transitions between the nucleotides™. Assuming time
reversibility reduces the number of rates to 6.

b d -

47N k\cef—)/

c [T e, T
o : N/ The subsitution rate of
A R nucleotide i to nucleotide j is
ﬁ & ‘{; N 4\ . .
b SR provided by the entry g;; in the
g rate matrix Q.

*Die four nucleotides can be considered again as ‘states’ **Rates are no probabilities, as they are time-independent!



Computing Event rates
A

subst

Given a sequence of length L drawn at random from the alphabet A={A,G,C, T} with

frequencies g, = i,vi e{A,C,G,T}

Let Q be the substitution rate matrix

Then we compute the total rate of substituting base i at position / as

r, re-scales time locally. It is drawn

q. = q.r, e : e R
i) ij'l from a gamma distribution with a 7 Bt
j=i mean of 1 and a shape parametera  ** | Ea s E
e T e p et
E — k=75,06=1.0 B
and the total substitution rate A,,; computes as k=050=10
0.2 - —
—_ 0.1 3

Asubst — § ‘,qil N
l 0 o (TETNANa SRR RRRRRRA AN R RN NN N nnss oo rd ARUNRRawos SR R RRRRRN NN nnns 2 A CRRRRRRRRARRRRRARRAR




How to represent functional constraints in the simulation
of the evolutionary process?

I S - - N N -
da dc dg da dr dg dc Substitution rate

Iy r r ry rs le ry Subst. rate scaling factor

Adel Agel Agel Agel Agel Agel Agel Deletion rate

}“ins }\‘ins }\‘ins xins kins }\‘ins }\‘ins xins Insertion rate

Functional constraints can be represented in such a model only via a
modification of the position specific rate parameters.
For example, small r; locally reduce the time that is available for a
substitution

11



How to infer evolutionary constraints on protein
sequences?

SESAKKS -

T8G - -KSE -

QLEKNDD

DSKPA KEEK

TKTDQKEP

— VD - -NXQ-
..

In 2 nutshell

e State-specific emission probabilities parameterize substitution rates
» State-specific transition rates parameterize position-specific insertion-
and deletion rates

12




A number of tools exist to simulate the evolution of
biological sequences using various evolutionary models

SeqgGen (Rambaut and Grassly 1997)
Event space contains only substitutions
sites evolve independently and identically
possibility of randomly assigning rate scaling factors across sites.

Rose (Stoye et al. 1998)

Event space contains substitutions, insertions and deletions
Insertions and deletions are randomly placed

Insertion and deletion lengths are drawn from a single distribution

INDELible (Fletcher and Yang 2009)&Indel-Seqg-Gen (Strope et al. 2009)
facilitate manual assignment of model parameters to individual partitions of
the data (i.e. local constraints). This helps to modulate the evolutionary process
for functional and non-functional regions (‘domains’ vs. ‘linker’)

REvolver (Kostler et al. 2012)

facilitates an automated assignment of constraints on the evolutionary process
several Indel-Distributions are available
pHMM guided (Pfam)

14



Simulating protein sequence evolution: Maintaining
evolutionary constraints

-m- N [ Neisseria_PilC |
General settings
>one substitution model

>site independent evolution Protein-specific parameterization
>uniform distribution of indel positions
>one indel length distribution

’%l: >site-specific substitution model
%.  >position-specific indel rates
R >position-specific indel length distributions

s —— L e
—C ) ST
D R = R e— e O —

! Koestler et al. (2012) MBE 29:2133-2145; https://github.com/BIONF/REvolver



Why are functionally equivalent proteins not identified as
homologs? The yeast and human RNase MRP complexes involved in
rRNA processing
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Why are functionally equivalent proteins not identified as
homologs? The yeast and human RNase MRP complexes involved in
rRNA processing
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A tree is an evolutionary hypothesis

A tree is a directed graph consisting of a
set of nodes and an set of edges (no
cycles possible)

Typically we constrain trees to consist of
nodes with indegree of 1 and outdegree
of O (leafs) or 2 (exception: root node)
Trees can be rooted (time!) or unrooted
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What are phylogenetic trees good for?

Which came first, the chicken or the egg?

Turtles Lizards Snakes Crocodiles Birds

P &£ i~ ©
\

Chickens
appear

y here

I3 SKetching Science Eggs already existed here

19



Some notations

leaf/taxon
y
A B C D
v
external
branch

q

inner node

root

internal branch

E F G

multifurcation

internal
branch

multifurcation D

’

inner node

external bifurcation
branch G

20



Basically, we have three different means to
reconstruct phylogenetic trees from sequence data

T PALLAMof OCCRM 12451549
i

e p
requires the least ——
number of (™ Maximum Parsimony Parsimony
)
changes (gllizrna;t:nrts) { Statistical Approaches:]\
Likelihood, Bayesian (~Evolutionary
\ Mo
ls .
Distances Distance Methods ) Find the tree
that most
likely gave rise
to the data
»ﬁ?g‘: = Q z .
Reconstruct the best fitting tree from a pair-wise distance matrix?
21

! see Grundlagen der Bioinformatik, Lecture 12



Modelling sequence evolution

Evolutionary models are often described using a substitution rate matrix Q and

character frequencies II.

4 /f
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[H = (70, .70 7, ,J‘L’T)]

From Q and //we reconstruct a
substitution probability matrix P
where P;(t) is the probability of
changingitojin time t.

P(t) = e?t

23




With the likelihood function, we can now compute the
likelihood for a time t that separates the sequences S and §’

S: GGTCCTGACAGAAATAAAC
S': GATCCTGAGAGAAATAAAC

m: alignment length This value denotes the probability
S;: character at position i in sequence S to observe the site pattern
S’ character at position j in sequence S’ (alighment column) at position i in

the alignment.
More precisely, it is the
probability that nucleotide S; has

been substituted by nucleotide S’;
after time t.




We can now compute column-wise the likelihood for any time t and
identify that t for which L(t/S5->S’)* is maximal over the entire alignment

S: GGTCCTGACAGAAATAAAC

HHLLELLLLPLLEFEERLY  toscieinood surface under 169

o
"+ GATCCTGAGAGAAATAAA &
0
Multiply ‘site-likelihoods’ across all m $ 7]
positions of the alignment
o
~
3
To]
! £
tls—s)= X P._, (1) s 5
Si Sl T
g o
I g
[ i
wn
Probability (given our model), that Q
S; was replaced by S’;in time t. I
Probability to see the letter at o
position i in the sequence %’ -
J | | . | T |
0.00 0.05 0.10 0.15 0.20 0.25

time (in subst. per site)

*watch out, products of probabilities become small very quckly. We therefore compute typically in log scale, hence the log-likelihoods



Calculating tree likelihoods

For a single site patte@nd a
given tree we compute:

[Lsu') [LOX P (dWX(LG) X P (d DV iE{A,C,G,T}j

0
1
0
0
( ope .
Note, these probabilities do Note, these probabilities DO
A not change as the bases are change with i and d, and are
C observed in the data! specified by the substitution
. model!
G
T A
A c
[ 091ifi=j
, pqrtlal © withd, =0.1V x€{1,..,5},and P,(0.1) = oLt -
likelihoods T 0.03 foreach i = j

27

! here you compute the partial likelihood Ls(i) for each ancestral nucleotide i in node 5 of the tree, given the data in k and the model



Calculating tree likelihoods

For a single site pattern k and a
given tree:

[Ls(i) — [L(C) x P.(d,)] X [L(G) x P,.(d,)],V iE{A,C,G,T}J

0

1 L,(A)=[1xP,(0.D)]x[1xP,;(0.1)]
0 =1x0.03x1x0.03

0 = 0.0009

Ly(C)=[1x P..(0.1)]x[1x P..(0.1)]

A | [0.0009]
c =1x091x1x0.03
6 |[0.0273] =0.0273
! IT: A L:(G) and Ls(T) are computed analogously
C
_partial ¢ withd, =0.1 ¥ x €{1,..,5},and P,(0.1) = 091iti=j
likelihoods T 0.03 foreach i = j

28




Calculating tree likelihoods

K For a single site pattern k and a
1. ..C. given tree:

A|O Al o 2 «..G... *
clrpetor 2 o= [ | DL xPE) | YiE{ACGT)
G| O G| 1 4 «.C... v={345}| j={ACcG T}
T|O T|o

AL AlO Likelihood of nucleotide A at node 6 in column k!

c[a} [elad, &

G| O G|l o 6 B

T 0 T 0 "Lq(A)XPAA(dq)|'|‘|L5(C),XEgz](dg)I"‘ILngIXPG‘]‘ds)I'|‘L5‘T)XPI4gd5H2k

|IL3§A2xP44§d3 ) |-I-|L3((: )X Pc4(ds) |-I-|L3(G)xPG4§d3 ) W Lg(T)xP;“(dg )l*
(Lo (A)xPy,(dy) WLy (CO)xPey(dy) W L4 (G)xPea(dy) W Ly(T)xPra(d)]E

10.0009x0.91]+[0.0273x0.03 H[0.0273x0.03 K 0.0009x0.03]x
[0x0.91] +1x0.03| +[0x0.03 +[{0x0.03]x
[0.0000022 | [0x0.91]+ 1x0.03]+ [0x0.03]+ [0x0.03] =[0.002484X0.03X0.03 =

0.0000022

091ifi=;
[Withdx=0.1VxE{l,..,S},andPij(O.l)={ ne=J ]
| j

- || |>

0.0009

- ||| >

0.03 foreach i =

29

* Note, the v represents the nodes for which the partial likelihoods have already been computed. The sum indicates that you sum over all possible internal labels. Note, that for leaf nodes the probability of the
observed nucleotide is 1 and that of the other nucleotides is 0! Hence, for nodes 3 and 4 there is no need to compute a sum!




Calculating tree likelihoods

- || |>

0.0009

For a single site pattern k and a
given tree:

[Lsm = [L(C) x Py (d)] X [L(G) X Py (d,)].¥ i E{A.C.G.T} |

oO|lOoO|=]|O

A | 0.0000022
C 0.0212954
G 0.0000231
T 0.0000022

% )
L= ]] [ YL (j)xP,(d)|Vi€E{ACG.T}
v={34,5}| j={ACGT}
Y.
~
[ = E 7, x L (i) = 0.005331; mit 7, = 0.25Vi € {A,G,C, T}
i={A,C,G,T}
This is the site likelihood of the pattern k given the tree y
[with d,=0.1Y x€{L,..5},and P,(0.1) ={ 091 = J
0.03 foreach i = j
30

* Note, the v represents the nodes for which the partial likelihoods have already been computed. The sum indicates that you sum over all possible internal labels.



Calculating tree likelihoods

A W N R

CCG

For an alignment of four
sequences and length m=3 the
likelihood is then

L(T) = HL(") =0.005331% x0.005331
k=1

=0.000000152

or the log-likelihood is

[ InL(T) = E;lnb") --157 J

31



Now that we know how to evaluate the likelihood of any given
tree, we need to ask how to find the ML tree

Heuristic tree search begins with an initial sub-optimal solution (starting tree)
obtained either via step-wise addition (or using a distance tree)

A B
L B .
I )\]/4 4560.70
P D C A D A £

’I -3920.98 C f 4 D
; B A B arioar - AL B ,4521.39
~ -
A% - - > < » H -
) C D
1 C 3689.22 . ‘, : b
\ ! A

C B P
>—< E D
B D A

-3920.21 4610.40

c D
\~*
A’)X\T/x:“t
B
4579.17
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Maximum Parsimony and Maximum Likelihood only evaluate
trees and do not reconstruct them!
Finding the best tree is highly complex!

Exhaustive Search: evaluates every possible tree and hence an optimal
solution is guaranteed. Limit: 10-12 taxa

Branch and Bound: excludes parts from the tree space from the
search where the optimal tree cannot be found. Guarantees to find
the optimal tree.

Heuristics: Can be applied to large taxon sets but does not guarantee
an optimal solution. Here, stochastic iterative algorithms are used that
randomly modify a tree and accept the modification if a better tree is
found.




our goal!

Finding the best tree
Evaluate random rearrangements of the starting tree and accept
new tree if it improves P(D|M,T). Continue until convergence.

;ﬁ“%

full tree

C " -
A !
E. ¥
N B '. \
: E )
F -
H —
Nearest Neighbor Interchange (NNI) Subtree Pruning + Regrafting (SPR) Tree-Bisection + Reconnection (TBR)
O(n) NNI trees O(n?) SPR trees O(n?®) TBR trees

34




Tree rearrangements in RAXML"

full tree

D
A
E
; D
/ F\A
£
C H G X
B
F
H G

E. ,F G H 1
A b A bt o
' ,C ! E i
B TN B | '
D AL F
H G D C

Nearest Neighbor Interchange (NNI)
O(n) NNI trees

Subtree Pruning + Regrafting (SPR)
O(n?) SPR trees

Tree-Bisection + Reconnection (TBR)
O(n?®) TBR trees

35

Stamatakis et al. 2008 Syst Biol 57:758-771



Lazy subtree rearrangement in RaxML

Prune subtree

D

A

Stamatakis et al. 2008 Syst Biol 57:758-771

36



Subtree pruning and regrafting
(a single iteration)

Regraft subtree subsequently on all branches to form all alternative topologies t;

for each t;
optimize all branch lengths
if LL(t;) > LL(t,)
set t; to t,
else
discard t;

O
\ 4

A

Stamatakis et al. 2008 Syst Biol 57:758-771; LL represents LogLikelihood

37



Optimizing branch lengths is time consuming due to re-
calculation of all the partial likelihoods

To compute optimal branch lengths do the following after initializing all branch
lengths.

A. Choose a branch

B. Move the virtual root to an adjacent node

C. Compute all partial likelihoods recursively

D. Adjust the branch length to maximize the likelihood value

38




Subtree Rearrangement in RAXML
(a single iteration)

Regraft subtree subsequently only on branches up to a certain distance n* to form t;

for each t;
optimize all branch lengths
if LL(t;) > LL(t,)

set t; to t,
else

discard t;

D

Rationale: Reduce the search space for better trees (computational speed-up)

*radius of n internal nodes from pruning point. n takes typically values between 5 and 25

39



Lazy Subtree Rearrangement in RAXML
(a single iteration)

Regraft subtree subsequently on all branches up to a certain distance n to form t;

for each t; t, ALL(t,)
optimize lengths of 3 neighboring branches x,y,
compute ALL(t;)

store t;and ALL(t;) for later

analysis

Rationale: Reduce computational burden by computing only Approximate Log Likelihoods (ALL)

to rapidly pre-screen for promising topologies. 10




Lazy Subtree Rearrangement in RAXML

Regraft subtree subsequently on all branches up to a certain distance n to form t;

store t;and ALL(t;) for later
analysis

ALL
ALL(t,)
ALL(t,)
ALL(t,)
ALL(t,)
ALL(ts)
ALL(tg)
ALL(t,)
ALL(ts)
ALL(t,)
ALL(ty)
ALL(t,,)

ALL(t;,)

Rationale: Reduce computational burden by computing only Approximate Log Likelihoods (ALL)

to rapidly pre-screen for promising topologies.

41




Lazy Subtree Rearrangement in RAXML

Sort list of t; according to ALL(t;) and choose the x best trees for thorough optimization

ALL
for each t; with rank < x in the ALL lis
- ALL(t;)
t LL(t,) optimize all branch lengths
. . ALL(t,)
t; LL(t,) if LL(t,) > LL(to)
b Lt set t to t, -
t, LL(t,) else 1 ALL(t,)
t LL(ts) discard t; . ALL(ts)
ALL(t,)
ts LL(te)
ALL(t,)
t, LL(t,)
ALL(tg)
ALL(ts)
ALL(ty)
ALL(ty,)
ALL(t;)

Rationale: Reduce computational burden by computing only Approximate Log Likelihoods (ALL)
to rapidly pre-screen for promising topologies.

*x typically set to 20

TV "2s9p

42



Lazy Subtree Rearrangement in RAXML
Likelihood Cutoff Heuristics

Regraft subtree subsequently on all branches up to a certain distance n to form t;

ALL

6 for each t; ALL(ty)
optimize lengths of 3 neighboring branches x,y, e
compute ALL(t;) 2

store t;and ALL(t;) for later ALL(t;)
analysis ALL(t,)
ALL(ts)
ALL(te)
ALL(t;)
ALL(ts)
ALL(to)

43




A Rapid Bootstrap Algorithm for the RAXML [= « Previous | Next Article »
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Thus, if the approximate log likelihood all (t)
for the rearranged tree t’ is worse than the log
likelihood Il (t) of the currently best tree t and
if the difference 6(all (t'), lI(t)), where &6(x,
y)=x-y, is larger than a certain—dynamically
determined—threshold Ihcutoff, the remaining
LSRs beyond that node are omitted.
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Lazy Subtree Rearrangement in RAXML
Likelihood Cutoff Heuristics

Regraft subtree subsequently on all branches up to a certain distance n to form t;

determine ALL(t,,)
if ALL(t,;) < LL(t,) AND

U4

. t; ALL(t,)
/ALL(tlo) - LL(tO)/ > Ihcutoff \\\
3¢ stop evaluation for this clade : E ALL(E)
else proceed with t;; J ts ALL(ts)
‘ t, ALL(t,)
.. ts ALL(ts)
te ALL(ts)
t, ALL(t;)
tg ALL(tg)
ty ALL(ts)
t1o ALL(t;)

Rationale: Don’t evaluate beyond a pointw cood tree is most likely not to be found. In
other words, if t; is already bad there is no need to evaluate t;; or t;, belonging to the same

clade. 45

*lhcutofe IS dynamically determined



Lazy Subtree Rearrangement in RAXML
Likelihood Cutoff Heuristics

Determining dynamically the likelihood cutoff value /h,,.
Iteration 1:

1.
2.

w

initialize Ih o With o
perform a full descent into all alternative topologies within rearrangement distance

n
for each alternative tree topology t; compute d=/ALL(t) — LL(t,)]

compute 1h e as m
lhcutoﬁ‘ = Edl / m
i=1

where m is the number of evaluated alternative topologies

Iteration k > 1:

1.

set [h 5 to the value determined in iteration k-1

2. for all clades

3.

1. evaluate alternative tree topologies t; at increasing rearrangement distance from t,
2. compute d=[ALL(t) — LL(t,)| and stop descent into clade when d; > Ih, .«

update /h s p




How stable is my tree?
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Remember: Our assumption, thus far, was that all columns in our alignment
share the same evolutionary history
(here denoted by the same time t for each site)

S: GGTCCTGACAGAAATAAAC

HHLLELLLLPLLEFEERLY  toscieinood surface under 169

o
"+ GATCCTGAGAGAAATAAA 8
0
Multiply ‘site-likelihoods’ across all m positions of the alignment! $ 7]
The underlying assumption is: All positions evolved according to
the same tree! o
- B
g
s
uwn
! £
Litls—s)= s 5
T
g o
(? '
InL= . -36.4
0 -
] at= 1 0.1073
(3] [
i
o
o
m 1
! | | T T T |
0.00 0.05 0.10 0.15 0.20 0.25

time (in subst. per site)

*watch out, products of probabilities become small very quckly. We therefore compute typically in log scale, hence the log-likelihoods
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Resampling methods for assessing the support of a tree

given the data

Rationale: All positions in a sequence, and hence all alignment columns, should have the
same evolutionary history. Thus, it should in principle not matter which subset of the data |
am using for tree reconstruction if the phylogenetic signal is sufficiently strong and indeed
consistent.

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

sS4 C G A G C T G C T
S1 S3
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Resampling methods for assessing the support of a tree j
given the data

Rationale: All positions in a sequence, and hence all alignment columns, should have the
same evolutionary history. Thus, it should in principle not matter which subset of the data |
am using for tree reconstruction if the phylogenetic signal is sufficiently strong and indeed
consistent.

Taxon 1 2 3 4 5 6 7 8 9
S1 C G C G C T G T T
S2 C G C A C T C T T
S3 T G A A C T G C T
sS4 C G A G C T G C T

S1 S3
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Resampling methods for assessing the support of a tree j
given the data

Rationale: All positions in a sequence, and hence all alignment columns, should have the
same evolutionary history. Thus, it should in principle not matter which subset of the data |
am using for tree reconstruction if the phylogenetic signal is sufficiently strong and indeed
consistent.

Taxon 1 2 3 4 5 6 7 8 9
S1 C G C G C T G T T
S2 C G C A C T C T T
S3 T G A A C T G C T
sS4 C G A G C T G C T

S1 S3
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Resampling methods for assessing the support of a tree j
given the data

Rationale: All positions in a sequence, and hence all alignment columns, should have the
same evolutionary history. Thus, it should in principle not matter which subset of the data |
am using for tree reconstruction if the phylogenetic signal is sufficiently strong and indeed
consistent.

Taxon 1 2 3 4 5 6 7 8 9
S1 C G C G C T G T T
S2 C G C A C T C T T
S3 T G A A C T G C T
sS4 C G A G C T G C T

S1 S3
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Resampling methods for assessing the support of a tree j
given the data

Rationale: All positions in a sequence, and hence all alignment columns, should have the
same evolutionary history. Thus, it should in principle not matter which subset of the data |
am using for tree reconstruction if the phylogenetic signal is sufficiently strong and indeed
consistent.

Taxon 1 2 3 4 _% -> 6_> _7> 8 9
S1 C G C G C T G T T
S2 C G C A C T C T T
S3 T G A A C T G C T
sS4 C G A G C T G C T

>—> —> —> —>
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<7 ’
Resampling methods for assessing the support of a tree

given the data

Observation: The phylogenetic signal in the data is apparently not entirely consistent and we
would like to have a method to assess the extent of variability.

Taxon 1 2 3 4q 5 6 7 8 9
S1 C G C G C T G T T
S2 C G C A C T C T T
S3 T G A A C T G C T
S4 C G A G C T G C T
I\ ]
i
S1 S3 S1 S3 S1 S3

6 X >< 1x >_< 2 X >_<
s2 s4 s4 s2 s2 s4
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Resampling methods for assessing the support of a tree j

given the data

Approach 1 - Jackknife: Remove a random subset of alignment columns and re-compute the
tree. Typically a 50% Jackknife analysis is performed.

Taxon 2 4 5 7 9
S1 G G C G T
S2 G A C C T
S3 G A C G T
sS4 G G C G T
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- —
Resampling methods for assessing the support of a tree j

given the data

Approach 1 - Jackknife: Remove a random subset of alignment columns and re-compute the
tree. Typically a 50% Jackknife analysis is performed.

Taxon 1 8 9
S1 C T T
S2 C T T
S3 T C T
sS4 C C T
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- —
Resampling methods for assessing the support of a tree j

given the data

Approach 1 - Jackknife: Remove a random subset of alignment columns and re-compute the
tree. Typically a 50% Jackknife analysis is performed.

Taxon 1 2 5 6 8
S1 C G C T T
S2 C G C T T
S3 T G C T C
sS4 C G C T C
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Resampling methods for assessing the support of a tree j

given the data

re-compute the tree. Typically a 50% Jackknife analysis is performed.

Approach 1 - Jackknife: Remove a random subset of alignment columns and 3 repeat
n* times

Taxon 1 2 5 6 7
S1 C G C T G
S2 C G C T C
S3 T G C T G
s1 s3 sS4 C G C T G

S3

s2 IN1I ™ 54
/ s3 s1 s3
S2 sS4 ﬁ

JN99

S2 S4q
N0 2

*n is typically 100 or 1000 **value is typically given in percent
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" Resampling methods for assessing the support of a tree
given the data

Approach 2 — Bootstrap: Resample randomly chosen columns from the repeat
original alignment (with replacement) to obtain a new alignment with the n* times
same length as the original alignment.

Taxon 7 7 9 8 5 6 7 1 2 Taxon 1 1 4 4 7 7 1 5 9
S1 G G T T C T G C G S1 C G C G C T G T T
[ S2 C C T T C T C C G [ S2 C G C A C T C T T
S3 G G T C C T G T G S3 T G A A C T G C T
S4] G G T C C T G C G S4 ] C G A G C T G C T
R >
/ Taxon 1 2 3 4 5 6 7 8 h
S1 C G C G C T G T T
<:| <:| s2 c 6 ¢ A Cc T ¢ T T |:>|:>
S3 T G A A C T G C T
ﬁ? \54 c G A G C T G C y %
Taxon 4 4 4 4 4 4 4 4 4 Taxon 6 5 2 9 6 1 6 8 9
S1 G G G G G G G G G S1 T C G T T C T T T
S2 A A A A A A A A A S2 ] T C G T T C T T T
S3 ] A A A A A A A A A S3 T C G T T T T C T
S4 G G G G G G G G G [ sS4 T C G T T C T C T

59

*n is typically 100 or 1000



B - ’
Resampling methods for assessing the support of a tree

given the data

original alignment (with replacement) to obtain a new alignment with the
same length as the original alignment.

Approach 2 — Bootstrap: Resample randomly chosen columns from the § repeat
n* times

Taxon 7 7 9 8 5 6 7 1 2 Taxon 1 1 4 4 7 7 1 5 9
s1 G G T T ¢ T G C G s1 c G ¢ 66 € T G T T
[sz c ¢ T T ¢ T C C G [sz c G ¢ A C T cCc T T
s3 G G T Cc C T G T @G s3 T G A A C T G C T
S4]GGTCCTGCG S4]CGAGCTGCT
%(Taxon 1 2 3 4 5 6 7 8 ha
s1 c G ¢ G C T G T 7
S1 53 <:I<:I s2 c 6 ¢ A C T € T T |:>|:>
s3 T G A A C T G € T
s3 \_s4 c 6 A G C T G Cc T/
2 BTN s | o P - )
S3 S1 S3
N T N gg**
|
S2 BS99 S4 4
“< Bsio0 % N > .

*n is typically 100 or 1000 **value is typically given in percent



Rapid bootstrapping in RAXML

ORIGINAL ALIGNMENT
[ Compute MP étarting tree |

an
optimize model parameters

b

Reload original alignment to
compute new starting tree

infer rephcate tree 9

generate BS sample 9 J >

[ Compute MP tree

L infer repllcate tree 10

generate BS sample 10

generate BS sample 11

L infer repllcate tree 11

Y

generate BS sample 19 )

'R
g aa?®
o o
.

L infer repllcate tree 19

»

(generate BS sample 99 )

an
infer replicate tree 99
S J

Y
RBS search finished
100 BS trees

BOOTSTRAP REPLICATES

generate BS sample 0
infer rephcate tree 0
generate BS sample 1
infer rephcate tree 1

use final tree of replicate 0 as
starting tree for replicate 1

use final tree of replicate 8 as
starting tree for replicate 9

use final tree of replicate 10 as
starting tree for replicate 11

use final tree of replicate 18 as
starting tree for replicate 19

s

N o

Model parameters \
estimated only once
Bootstrap trees start from
10 different MP trees
(avoid local optima)
Dependency in BS tree
computation due to using
final tree of BS replicate as
starting tree for next
replicate

rough approximation of
substitution rate
heterogeneity across sites
(CAT model)

nin LSRY is set randomly to
values between 5 and 15
only 2 LSR iterations

use a stricter lh, o6 (50%)
evaluate only 5 best trees
after LSR

speed improvement of
~20x

61

1 Lazy Subtree pruning and Regrafting



The last step of rapid bootstrapping is the inference of the
ML tree

ORIGINAL ALIGNMENT BOOTSTRAP REPLICATES

RBS search finished
100 BS trees

FAST ML search using every
5th BS as starting tree

[ 10 best trees selected ]

Slow ML search CAT*

Thorough LSR search GAMMA*

Y
[ ML tree ]

)
o
D
(%]
—
=
=
D
()

—

N N N B S e e i BN B S NN BN BN NN NN BN BN NN NN BN B NN NN B B NN N B S

62
*CAT and GAMMA are two different ways to account for substitution rate heterogeneity across sites where GAMMA is the more complex one




Modeling Substitution rate heterogeneity across sites

SRYC_DROME/358-380
INSM1_HUMAN/441-464
XFIN XENLA/1276-1298
XFIN XENLA/1044-1066
ZNF76_HUMAN/285-309
CF2_DROME/401-423
IKZF1 MOUSE/144-166
EVI1 HUMAN/131-154
TRA1 CAEEL/337-362
SUHW_DROAN/349-373
EGR1_HUMAN/396-418
ADR1_YEAST/104-126
SDC1_CAEEL/268-290
SDC1_CAEEL/145-168
KRUH_DROME/299-321
TTKB_DROME/538-561
KRUP_DROME/222-244
BNC1 HUMAN/928-951
ESCA_DROME/370-392
ADR1_YEAST/132-155
CF2_DROME/429-451
ZG2B_XENLA/174-196
ZG3_XENLA/6-28

YL57 CAEEL/26-49
ZG5A_XENLA/90-112
ZG52_ XENLA/6-27

P43 XENBO/45-69
Z02_XENLA/34-59
ZGB_XENLA/146-168
SDC1_CAEEL/652-674
Z061 XENLA/62-84
ZG44 XENLA/5-27

YQCD. ..
HLCE. .

YGCN..
YKCG..

YTCPE
YTCS.
FQCN.
YECE.
YSCQI

YACK. .
FACD..
FVCE. .
YFCH. .
¥YMCO. .
FECE. .
YECE..
FTCK. .
ITCH. .
CKCN. .
YPCG. .
FRCG. .
FTCT. .
FMCT. .
YLCY..
FSCT..
FTCE..

WECGK

YSCA..
FTCT..
VVCF..
FTCF..
FACT..

(]

(]

ICG..
.VCG. .
.CCD. .
.LCE..
.PHCG. .
..¥CG..
..0CG..
..NCA..
.PQCT..
.ICG..
.ICG..
.VCT. .
.ICG..
.VCL. .
.FCH..
.FCF..
.ICS..
.LCO. ..
.LCG. .
.LCN. .
.YCG. .
.ECG. .
.KCG. .
.YCG. .
.VCG. .
.ECG. .
.KDCG. .
.DCG. .
.ECG. .
.HCG. .
.ECG. .
.KCK. .

LOEFVOKINLTHHARI...H
.ESFASKGAQERHLRL. .LH
.RSFSTHSASVRHORM...C
.RSFVEKSALSRHQRV...H
.RGFTSATNYENHVRI...H
.KSFTOSNTLEQHTRI...H
LASFTOEGNLLRHIKL...H
.KVFTDPSNLORHIRS. .QH
.KSYTDPSSLREHIKA..VH
. KDFTRSYHLERHQKYS.SC
. REFARSDERKRHTKI...H
.RAFARQEHLERHYRS...H
L TVFIEQDNLFKHWRL...H
. TLFGHTYNLFMHWRT . .SC
.KLFSVEKENLOVHRRI...H
. KEFTREDNMTAHVEKI..IH
.RSFGYKHVLONHERT...H

KTYSNKGTFRAHYKT. .VH

.KAFSRPWLLQGHIRT...H
.RCFTRRDLLIRHAQK. .IH
.RAFTVKDYLNKHLTT. . .H
.KCLTRQYQLTEHSYL...H
.KCLSTKQKLNLHHMT. . .H
.KTLSDRLEYQQHMLK. .VH
.EMFTYRAQFSKHMLK. . .H
.KRF.SQKSNCWHTED...H
.KMFARKRQTIQKHMKR. . .H
. KHF SEKMYLQFHQKNPSEC
.EHFANKVSLLGHLKM. . .H
.TRC .HYTLLHDHLDY. .CH
.TCFVNYSWLMLHIRM. . .H
.RRFCSNKELFSHKRI...H

f 1

How to account for conserved/slowly evolving positions in the substitution model?
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Modeling rate across sites
Revisiting substitution models

)

7\ / 3(}";‘ \ /

' 4 ~ N— N—1H
~ \ / \ _/
&~ N (sy \

(s N { N—H
b
TR < H
A G)
1 f
d C
(8 a9
H —
N—1 ¢ N
—< s -{' N (
/ \_/
) N s o
‘ij, . /
— )\4{ 3

AN 0
& 55—
\o—r(

(We re-scale the substitution rat

\ai

in a site-specific manner, i.e. the
substitution rate at a position /is

~

e

J

CoA

0=

N

C

QU S O

It is a convention \

to set the
diagonal entries
g;such that the
rows sum up to 0.
Thus,

q; = _gqu /

However, this model assumes that all sites in a
sequence, or all columns in an alignment evolve with the
same relative rate. Note, that we can rewrite the total

rate for a given position as

We can now introduce a neutral parameter r=1 such that
can re-write g; as g;*r
For a sequence of L characters we have now the

{mmm possibility to give the parameter r for /=1...L a site specific

value r,.

q;, = quj

J=i




Modeling rate across sites
Common approaches

Probability Density for Gamma Distribution with Variable Alpha and Beta=0.25

Distributions
—— alpha=0.1
—— alpha=1.25 (SIMMAP default)
—— alpha=2
—— alpha=4
—— alpha=8
alpha=10

0.15

Density

0.05

0.00

T 1
0 20 40 60 80 100

x value

Continuous Gamma distribution with a mean of 1*.
Note that the parameter o determines the shape of the
distribution.

(Problem of over-parameterization and over-fitting)

4 - k k
3 4
f(r) 21
]
1.
0 T T
0 0.5 1 1.5 2
's

Fig. 1. Discrete approximation to the gamma distribution G(a.,p),
with a = B = ;. Four categories are used to approximate the con-
tinuous distribution, with equal probability for each category. The
three boundaries are 0.1015, 0.4549, and 1.3233, which are the per-
centage points corresponding to p = Y4, %/, 3/4. The means of the four
categories are 0.0334, 0.2519, 0.8203, 2.8944. The medians are
0.0247, 0.2389, 0.7870, 2.3535, and these are scaled to get 0.0291,
0.2807, 0.9248, and 2.7654, so that the mean of the discrete distri-
bution 1s one.

*Thus, if | choose randomly from this distribution, the overall rate will not change!; **Z. Yang (1994) J Mol Evol 39:306



Modeling rate across sites
Common approaches

Probability Density for Gamma Distribution with Variable Alpha and Beta=0.25

0.15

Distributions

Ipha=0.1
alpha=1.25 (SIMMAP default)
alpha=2 4
alpha=4

alpha=8

alpha=10

* %k

T

f(r) 2

0.10

Likelihood based tree reconstruction methods assign each position in the alignment
either its own relative rate (Gamma model) or assigns it to a given rate category. In the
latter case you are asked how many rate categories you want to use (values range
typically between 4 and 12).

sity

Fig. 1. Discrete approximation to the gamma distribution G(a.,p),
with a = B = ;. Four categories are used to approximate the con-
tinuous distribution, with equal probability for each category. The
three boundaries are 0.1015, 0.4549, and 1.3233, which are the per-
centage points corresponding to p = Y4, %/, 3/4. The means of the four

o
S
o

0 2 0 M 80 it categories are 0.0334, 0.2519, 0.8203, 2.8944. The medians are

. | oxvale . . 0.0247, 0.2389, 0.7870, 2.3535, and these are scaled to get 0.0291,

Continuous Gamma distribution Wl.th a mean of 1*. 0.2807, 0.9248, and 2.7654, so that the mean of the discrete distri-
Note that the parameter o determines the shape of the bution is one.

distribution.
(Problem of over-parameterization and over-fitting)

*Thus, if | choose randomly from this distribution, the overall rate will not change!; **Z. Yang (1994) J Mol Evol 39:306
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Approximate speed-up of the Rapid Bootstrap Method

# SEQS # PATT % Gaps SBS (hrs) RBS (hrs) Speedup
d125 19,436 32.72 128.45 10.52 12.21
d140_AA 1,041 0.60 51.80 5.17 10.02
d140_AA_P 1,057 0.60 63.55 5.34 11.89
d150 1,130 4.77 5.31 0.37 14.46
d218 1,846 35.33 18.33 1.18 15.49
d354 348 14.71 4.45 0.30 14.63
d404 7429 78.92 236.10 16.91 13.96
d404.r 7,444 78.92 259.23 24.08 10.77
d500 1,193 248 31.09 1.86 16.72
d628 1,033 36.44 26.47 1.88 14.11
d714 1,231 5.83 48.32 2.86 16.89
d775_AA 3,838 19.35 2673.74 332.67 8.04
d994 3,363 71.39 255.25 14.72 17.34
d1288 1,132 7.53 218.06 14.63 14.91
d1481 1,241 26.58 137.28 9.09 15.10
d1512 1,576 3.02 198.44 13.43 14.77
d1604 1,275 5.71 159.23 8.61 18.48
d1908 1,209 58.38 224.72 12.05 18.64
d2000 1,251 12.98 422.23 21.02 20.08
d2308 1,184 12.71 379.01 28.68 13.21
d2554 1,232 5.81 386.04 29.39 13.13
d4114 1,263 2.00 583.58 39.09 14.93
d6718 1,122 20.87 1235.75 76.02 16.26
d7764 851 20.60 1273.77 72.90 17.47
Averages 2,655 23.26 375.84 30.95 14.73

#Seqs: Number of sequences; #PATT: Number distinct patterns; SBS: Standard Bootstrap; RBS: Rapid Bootstrap 67

Table from Stamatakis et al. 2008 Syst Biol 57:758-771



Looking at trees via their splits

Each branch of a tree describes a split of OTUs into two sets

A
These sets correspond to the two clades associated with the branch

e.g. black branch of the tree specifies the split ABCD | EFG

*can also be written ADCB | GFE etc.
*i.e. the taxon lists in the two halves of the split are unordered G
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Looking at trees via their splits

Splits are either

trivial

*example: F | ABCDEG

*associated with terminal branches

*provide no information about topology structure

non-trivial
*example: ABCD | EFG

*associated with internal branches
*provide information about the tree topology
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Looking at trees via their splits

Complete list of splits described by a tree allows reconstruction of that tree’s topology

Helps to consider the sets of clades described by the splits

p ¢ @
A DF | ABCEGH
BCDFGH | AE
F : ABEGH | CDF

B H BH | ACDEFG
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Split Compatibility

Sets (e.g. pairs) of splits are either:
compatible

*a tree can be drawn that contains all splits in the set
incompatible

*a tree cannot be drawn that contains all splits in the set

Definition: Two splits W|X and Y|Z are compatible, i.e. not contradictory, if at least
one intersectionof WNY,
WnZ,XnY,XnNZisempty.

Which of these sets of splits is incompatible?

BCDFGH | AE
AB|CDE | |ABEGH | CDF AB | CDE
DE | ABC BG | ACDEFH AC | BDE

() (ii) (iii)




Sets of trees can be summarized by looking at their split sets:

Strict Consensus Trees

AL T (i) N/ AL 1 AL (iv)
A&E (iii) mE mc
A E
B ] F B ] = B E D
B F E D ..
NUE A J) N
E A C >#<
B B
L e B F (vii) ¢
i i v ] v | vi|viiviii
AB | CDEF|* % |*]|*|®*]|*]|*]|* 8
CD | ABEF * * 2 A B
EF|ABCD | # | % | * * *15 D
ABC | DEF | * * 2 C
DE | ABCF * |
CF | ABED L I 2
ABD | ECF *|* *|3
ABF | CDE % | F E




Sets of trees can be summarized by looking at their split sets:
50% Majority Rule Consensus Trees

A _ ( A
A&E i) S (|||) m
B [ B

Vi V“) m

Alv) D
: m
T\
C

i piii Liv ] v | vi|viiviii

AB|CDEF [ # | % | % | %% |*]|*]|=*

CD | ABEF * *

8

2
EF|ABCD | * | = || [= #|5 D
ABC | DEF [ * | [* 2 C \8/
DE | ABCF * | g
CF | ABED %] |2
ABD | ECF S EABEIE A
ABF | CDE * | F E




Label the Branches!

—— Choristylis
]
Branches of X700 I [teaceae
— [fed
consensus.tre.e 1 0
labeled to indicate Prerostemon Plerostemonaaceae
proportion of trees
containing that Heuchera
branch/split 100 o
100 Micranthes | Saxifragaceae
100 8 Saxifraga
Ribes  Grossulariaceae

Resolving an ancient, rapid radiation in Saxifragales.
Jian S, Soltis PS, Gitzendanner MA, Moore MJ, Li R, Hendry TA, Qiu YL, Dhingra A, Bell CD, Soltis DE.

Syst Biol. 2008 Feb;57(1):38-57. 74
PMIDFT827500T



http://www.ncbi.nlm.nih.gov/pubmed/18275001?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum

The missing bit: Tree evaluation using Bayes theorem

So far we have computed

P(DIT,0)

i.e. the likelihood of the data D given the tree T and
the parameter vector 6.

However, what we are interested in most of the times
is the likelihood of 7"and @ given D, i.e.

P(T.0|D)
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The missing bit: Tree evaluation using Bayes theorem

So far we have computed

P(DIT.,0)

i.e. the likelihood of the data D given the tree T and
the parameter vector 6.

However, what we are interested in most of the times
1s the likelihood of 7"and @ given D, which is given
by Bayes’ theorem

P(DIT,®)*P(T,0)

P(T.Q1D) = @

total probability of the data considering all hypotheses. This is the problematic bit!

B
prior iIntformation on the proobanliity OoT a given nypotnesis (1,




Posterior probabilities from Bayesian tree searches and

ML bootstrap values have different meanings!

ML BS

BPP

-0.57

-/0.66

80/*

*/*

* /%
*/%
* /%
* [ g
!/0.99|
1/0.9],
* /%
* /%

SCLEROTINIA_SCLEROTIORUM
TRICHODERMA_VIRENS
NEUROSPORA_CRASSA
STAGONOSPORA_NODORUM
ASPERGILLUS_NIGER
TUBER_MELANOSPORUM
YARROWIA_LIPOLYTICA
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