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Different approaches to the sequence assembly 
problem

modfied from Compeau et al. (2011) Nature Biotechnology 29(11)

Overlap based assembly
Ø read identity is maintained
Ø intuitive
Ø Reads can be organized in an overlap graph
Ø Graph complexity increases with coverage, 

thus read redundancy inflates the graph 

Kmer approaches
Ø read identity is (temporarily) 

lost…
Ø Reads are organized in 

deBruijn graphs
Ø Graph complexity depends on 

Kmer size
Ø Graph complexity is (by and 

large) independent from 
coverage, read redundancy is 
naturally handled

Ø repeats are represented only 
once in the graph with explicit 
links to the different start and 
end points 
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0000, 0001, 0011, 0110, 1100, 1001, 0010, 0101, 1011, 0111, 1111, 1110, 1101, 1010, 0100, 1000 

Extract all words
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Extract all k-1 words and use as nodes
Connect two nodes if they form an observed kmer
Find the Eulerian cycle/path through the graph

Genome assembly abstracted to the problem of finding a 
shortest superstring 
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Passing through the edges by following the roman numbers 
reconstructs the superstring using each word exactly once!

I: 0000, II: 0001, III: 0011; IV: 0110; V: 1100; VI: 1001; VII: 0010; VIII: 0101; IX: 1011; X: 0111; XI: 1111;  
XII: 1110; XIII: 1101; XIV: 1010; XV: 0100; XVI: 1000 
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De Bruijn Graph Example
Shred reads into k-mers (k = 3)
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De Bruijn Graph Example
Merge vertices labeled by identical (k-1)-mers
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Basic concepts of de Bruijn graph based assemblers

• The sequence is treated as a consecutive string of words of 
length K

• Sequence reads are no longer considered to represent a 
consecutive string of nucleotides. Thus read length as well as 
read overlap become, in principle, irrelevant1

• Sequence reads are only used to identify words of length K
occurring in the sequence2

• Given perfect data – error-free K-mers providing full coverage3

and spanning every repeat – the K-mer graph would be a de 
Bruijn graph and it would contain an Eulerian path, that is, a 
path that traverses each edge exactly once 

1 This is of course not entirely true. Make sure to understand where the overlap matters
2 This is only true for the graph construction. When it comes to finding the path through the graph, read identity does matter
3 every K-mer that occurs in the original sequence is represented in the K-mer list extracted from the reads



The magic ‘Kmer’ gives most users of graph based assembly algorithms 
a very hard time as they have to decide on the size of K.

To give an informed statement we need to make sure to understand what K should represent 
and what the algorithmic requirements of de Bruijn graph assemblers are



Considering the size of K

AGACTAGAGAATTGCGATAG

A sequence of length 20 contains 11 different words of length 10!

Now, consider the sequence is spanned by 2 reads of length 13:

AGACTAGAGAATTGCGATAG
AGACTAGAGAATT

AGAATTGCGATAG

T:
R1:
R2:

It is easy to see that not all 11 words of length 10 can be reconstructed with the two reads. 
This violates the key assumption of the de Bruijn graphs

It is also easy to see that reducing K ameliorates the problem and eventually gets rid of it 
(just consider K=1…)



Kmer coverage depends on K and read coverage and
read start point distribution 

AGACCGTAACTTTAAAGGGCGAC

AGAC

AGACCGTAACT

CGTAACTTTAAA

TTAAAGGGCGAC
GGGCGAC

average read coverage (per position): 2
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K=8 Kmer
coverage
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Coverage and Kmer coverage

• Coverage, a.k.a. read depth is the number of reads covering on average a position in 
the sequenced template. This value is invariant for a given experiment

• Kmer Coverage is the number of reads a given Kmer is 
represented in. The value ranges from a minimum of 1 
to a maximum of the number of sequence reads and 
depends on the Kmer size.

Coverage
distributions

Oxford 

Nanopore

Illumina

Contig sequence

Sequence
reads



Kmer coverage distributions tend to be 
at least bi-modal

Kmers introduced by sequencing errors (they do not occur 
in the genome) 

‘Genomic’ Kmers

Kmers in repeats



Kmer coverage plots for two different values of K using the same 
(metagenomic) data sets

The Kmer coverage is a function of the read coverage and the Kmer length. Thus, 
even when the read coverage is way above 1, long Kmers may occur in only one or 
two reads, having thus the same occurrence frequency as Kmers introduced due to 
sequencing errors.

K=51 K=151

Kmers introduced by sequencing error Kmers introduced by sequencing error

algal Kmers

fungal Kmers
We have information to reconstruct 

both genomes!

Alga Kmers overlap in 
their frequency with 

Kmers introduced by the 
sequencing error. They 

will be ignored. Thus, we 
fail to reconstruct the 

algal genome although 
the information is in 

principle there! 
fungal Kmers

algal Kmers

what happens if we increase K?



Short read assembly with Velvet



Velvet: Graph construction

Read 1: T A G A C T G A T T G
Read 2: T A G A C T G
Read 3: A C T G A T T G
Read 4: A T T G A C C A
Read 5: A T T G C C…

Kmer
Rev. complement

Read-Id Offset

TAGAC
GTCTA

Read1 0
6

AGACT
AGTCT

Read1 1
5

GACTG
CAGTC

Read1 2
4

ACTGA
TCAGT

Read1 3
3

CTGAT
ATCAG

Read1 4
2

TGATT
AATCA

Read1 5
1

GATTG
CAATG

Read1 6
0

ATTGA
TCAAT

Read4 0
3

TTGAC
GTCAA

Read4 1
2

TGACC
GGTCA

Read4 2
1

GACCA
TGGTC

Read4 3
0

ATTGC
GCAAT

Read5 0
0

TTGCC
GGCAA

Read5 1
?1

1. Read hashing  with Kmer size of 5. 
Record for each Kmer also its reverse 
complement.

1 Note, read 5 is not given in full length, hence the ‘?’



Velvet: Graph construction

Read 1: T A G A C T G A T T G
Read 2: T A G A C T G
Read 3: A C T G A T T G
Read 4: A T T G A C C A
Read 5: A T T G C C…

1. Read hashing  with Kmer size of 5. 
Record for each Kmer also its reverse 
complement.

Kmer
Rev. complement

Read-Id Offset

TAGAC
GTCTA

Read1 0
6

AGACT
AGTCT

Read1 1
5

GACTG
CAGTC

Read1 2
4

ACTGA
TCAGT

Read1 3
3

CTGAT
ATCAG

Read1 4
2

TGATT
AATCA

Read1 5
1

GATTG
CAATG

Read1 6
0

ATTGA
TCAAT

Read4 0
3

TTGAC
GTCAA

Read4 1
2

TGACC
GGTCA

Read4 2
1

GACCA
TGGTC

Read4 3
0

ATTGC
GCAAT

Read5 0
0

TTGCC
GGCAA

Read5 1
?



Velvet: Graph construction

Read 1: T A G A C T G A T T G
Read 2: T A G A C T G
Read 3: A C T G A T T G
Read 4: A T T G A C C A
Read 5: A T T G C C…

1. Read hashing  with Kmer size of 5. 
Record for each Kmer also its reverse 
complement.
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Rev. complement

Read-Id Offset
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TCAAT

Read4 0
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TTGAC
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Read4 1
2

TGACC
GGTCA

Read4 2
1

GACCA
TGGTC

Read4 3
0

ATTGC
GCAAT

Read5 0
0

TTGCC
GGCAA

Read5 1
?



Velvet: Graph construction

Read 1: T A G A C T G A T T G
Read 2: T A G A C T G
Read 3: A C T G A T T G
Read 4: A T T G A C C A
Read 5: A T T G C C…

1. Read hashing  with Kmer size of 5. 
Record for each Kmer also its reverse 
complement.

Kmer
Rev. complement

Read-Id Offset

TAGAC
GTCTA

Read1 0
6

AGACT
AGTCT

Read1 1
5

GACTG
CAGTC

Read1 2
4

ACTGA
TCAGT

Read1 3
3

CTGAT
ATCAG

Read1 4
2

TGATT
AATCA

Read1 5
1

GATTG
CAATG

Read1 6
0

ATTGA
TCAAT

Read4 0
3

TTGAC
GTCAA

Read4 1
2

TGACC
GGTCA

Read4 2
1

GACCA
TGGTC

Read4 3
0

ATTGC
GCAAT

Read5 0
0

TTGCC
GGCAA

Read5 1
?



Velvet: Graph construction

Read 1: TAGACTGATTG
1.0|1.1|1.2|1.3|1.4|1.5|1.6

Read 2: TAGACTG
1.0|1.1|1.2

Read 3: ACTGATTG
1.3|1.4|1.5|1.6

Read 4: ATTGACCA
4.0|4.1|4.2|4.3

Read 5: ATTGCC…
5.0|5.1…

2. Rewrite reads with original Kmers

Kmer
Rev. complement

Read-Id Offset

TAGAC
GTCTA

Read1 0
6

AGACT
AGTCT

Read1 1
5

GACTG
CAGTC

Read1 2
4

ACTGA
TCAGT

Read1 3
3

CTGAT
ATCAG

Read1 4
2

TGATT
AATCA

Read1 5
1

GATTG
CAATG

Read1 6
0

ATTGA
TCAAT

Read4 0
3

TTGAC
GTCAA

Read4 1
2

TGACC
GGTCA

Read4 2
1

GACCA
TGGTC

Read4 3
0

ATTGC
GCAAT

Read5 0
0

TTGCC
GGCAA

Read5 1
?1

1 Note, read 5 is not given in full length, hence the ‘?’



Velvet: Graph construction

Read 1: TAGACTGATTG
1.0|1.1|1.2|1.3|1.4|1.5|1.6

Read 2: TAGACTG
1.0|1.1|1.2

Read 3: ACTGATTG
1.3|1.4|1.5|1.6

Read 4: ATTGACCA
4.0|4.1|4.2|4.3

Read 5: ATTGCC…
5.0|5.1…

Original Kmer

Read-Id Position Occurrence

Read1 0 Read2

Read1 1 Read2

Read1 2 Read2

Read1 3 Read3

Read1 4 Read3

Read1 5 Read3

Read1 6 Read3

Read4 0 -

Read4 1 -

Read4 2 -

Read4 3 -

Read5 0 -

Read5 1 -

3. Record for each read which of its original 
Kmers is overlapped by subsequent 
reads (Point 5)

Node1

Node2

Node3

Node4

Cut the chain of ordered original Kmers
each time an overlap with another read 
starts or ends. For each uninterrupted 
sequence of original Kmers a node is 
created.



Constructing the graph
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modified from Zerbino and Birney (2008) Genome Res 18
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Graph simplification

Simplification: The algorithm so far results in blocks (uninterrupted runs of 
original Kmers) that occur in a linear arrangement (chain). Thus, connect 
adjacent nodes A and B whenever A has only one outgoing edge that leads to 
B and B has only a single incoming edge. 
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modified from Zerbino and Birney (2008) Genome Res 18



Velvet: Initial read processing and graph construction

1. hash reads using the pre-defined kmer size: smaller Kmers increase 
connectivity of the graph but also the number of ambiguous repeats

2. record for each observed Kmer the id of the first read containing this 
Kmer and the position of the Kmer.

3. record each Kmer together with its reverse complement (typically odd 
Kmer sizes are used to avoid that palindromes (e.g. GAATTC) confuse 
graph construction ).

4. re-write each read as a set of original Kmers -> Roadmap
5. build 2nd database with the information for each read which of its original 

Kmers are overlapped by subsequent reads. Cut the chain of ordered 
original Kmers each time an overlap with another read starts or ends. For 
each uninterrupted sequence of original Kmers a node is created.

6. Trace reads through the graph using the roadmap.

In brief: Information about Kmer-read association is maintained 
throughout the de Bruijn graph construction



Velvet: Error removal

• Naïve approach: use deviation from expected coverage1 to identify and 
remove ‘errors’ (sequencing errors and polymorphisms).

• Velvet focuses on topological features:
– tips due to errors at the edge of reads

– bulges due to internal read errors

– erroneous connections due to errors in the library preparation (chimera)

A B C D

B’

A
B

C D

B’

1 is it clear to you how to generate this expectation?

A B X Y



Removal of Tips

• A tip is a chain of nodes that is disconnected on one end
• A tip will be removed if its length l is < 2K. Thus, long tips will be retained as they, most likely, 

represent genuine sequence. 
• a minority count criterion is applied. Thus, from two possible paths the more common one is 

retained.
• Tips are removed in an iterative manner until no more tips fulfill the removal criterion. 

Subsequent to tip removal the graph is simplified again (joining of adjacent nodes with 
unambiguous connection.

A B C D

B’

-> remove B’ if less reads support the A->B’ connection than the A->B connection. 
Remember that Velvet traces the reads in the graph!

-> remove B’ if its length is smaller than 2K

2

6 5 6

number of reads supporting an edge

l<2K?



Removal of Bubbles
• Two paths are redundant if they start and end at the same nodes and contain similar sequences.
• Velvet removes such bubbles with the ‘tour bus’ algorithm
• a simple sequence identity and length threshold is applied to select paths for simplification 

– start from an arbitrary node with out-degree larger 1 and progress along the graph visiting nodes in 
order of increasing distance from the start.

– The distance between two consecutive nodes X and Y is given by the length of s(Y) divided by the 
number of reads mapped to the edge between X and Y. Thus, paths represented in many reads result 
in shorter distances.

A
B C D

B’ C’

E

C’’ D’

Path1: A-B’-C’-D-E with distance PL1



Removal of Bubbles
• Two paths are redundant if they start and end at the same nodes and contain similar sequences.
• Velvet removes such bubbles with the ‘tour bus’ algorithm
• a simple sequence identity and length threshold is applied to select paths for simplification 

– start from an arbitrary node with outdegree larger 1 and progress along the graph visiting nodes in 
order of increasing distance from the start.

– The traversal through the graph is repeated from the same starting node but now following an 
alternative path and stopping when an already visited node is reached.

A
B C D

B’ C’

E

C’’ D’

Path1: A-B’-C’-D-E with distance PL1

Path2: A-B-C-D with distance PL2. Note that path stops at D, as this node has been 
visited before



Removal of Bubbles
• Two paths are redundant if they start and end at the same nodes and contain similar sequences.
• Velvet removes such bubbles with the ‘tour bus’ algorithm
• a simple sequence identity and length threshold is applied to select paths for simplification 

– start from an arbitrary node and progress along the graph visiting nodes in order of increasing 
distance from the start.

– The traversal through the path stops as soon as a node ‘D’ is visited that has been passed in a 
previous path.

– A backtrace starts for both paths ending at ‘D’ to find their closest common ancestor ‘A’. 
– The sequences represented by B’ – C’ and by B – C, respectively, are extracted, aligned and their 

similarity is assessed. 

A
B C D

B’ C’

E

C’’ D’

Sequence alignment and assessment of similarity



• Two paths are redundant if they start and end at the same nodes and contain similar sequences.
• Velvet removes such bubbles with the ‘tour bus’ algorithm
• a simple sequence identity and length threshold is applied to select paths for simplification 

– start from an arbitrary node and progress along the graph visiting nodes in order of increasing 
distance from the start.

– The traversal through the path stops as soon as a node ‘D’ is visited that has been passed in a 
previous path.

– A backtrace starts for both paths ending at ‘D’ to find their closest common ancestor ‘A’. 
– The sequences represented by B’ – C’ and by B – C, respectively, are extracted, aligned and their 

similarity is assessed. 
– If the similarity exceeds a predefined threshold the shorter path is chosen (A-B-C-D) and the 

alternative path is discarded. Note, this metric implicitly imposes a majority vote in choosing the 
consensus sequence.

A
B C D E

C’’ D’

B’ C’

Sequence similarity exceeds the threshold

Removal of Bubbles



Removal of Bubbles

A
B C D E

C’’ D’

Sequence similarity exceeds the threshold

• Two paths are redundant if they start and end at the same nodes and contain similar sequences.
• Velvet removes such bubbles with the ‘tour bus’ algorithm
• a simple sequence identity and length threshold is applied to select paths for simplification 

– start from an arbitrary node and progress along the graph visiting nodes in order of increasing 
distance from the start.

– The traversal through the path stops as soon as a node ‘D’ is visited that has been passed in a 
previous path.

– A backtrace starts for both paths ending at ‘D’ to find their closest common ancestor ‘A’. 
– The sequences represented by B’ – C’ and by B – C, respectively, are extracted, aligned and their 

similarity is assessed. 
– If the similarity exceeds a predefined threshold the shorter path is chosen (A-B-C-D) and the 

alternative path is discarded. Note, this metric implicitly imposes a majority vote in choosing the 
consensus sequence. 



Removing Erroneous Connections (Chimera problem)

A B C D E

• After completion of the tour bus algorithm the graph is checked for low 
coverage connections

• Given the law of large numbers any genuine node is expected to be 
covered by the expected number of reads

• remaining low coverage nodes are likely to flag artificial overlaps due to 
chimeric reads

• such low-coverage nodes are simply removed and the graph is disrupted

20* 23 5 27 24

*Numbers denote number of reads covering a given node

Done with the first step!



The problem with repeats

Merge reads up to potential repeat boundaries

!"#"$%&!"'()*



Dealing with repeats

A B

C

D E

Q R S T

A B C D E

Q R S TC

?



Repeat Types
• Low-Complexity DNA (e.g. ATATATATACATA…)

• Microsatellite repeats (a1…ak)N where k ~ 3-6
(e.g. CAGCAGTAGCAGCACCAG)

• Transposons/retrotransposons
– SINE Short Interspersed Nuclear Elements

(e.g., Alu: ~300 bp long, 106 copies)

– LINE Long Interspersed Nuclear Elements
~500 - 5,000 bp long, 200,000 copies

– LTR retroposons Long Terminal Repeats (~700 bp) at 
each end

• Gene Families genes duplicate & then diverge

• Segmental duplications ~very long, very similar copies



How big is the problem?
A human example

http://www.genome.ucsc.edu/cgi-bin/hgGateway?hgsid=335878521

All these are annotated repeats in the human genome

http://www.genome.ucsc.edu/cgi-bin/hgGateway?hgsid=335878521


Repeats, Errors, and Contig Lengths

• Repeats shorter than read length are OK

• Repeats with more base pair differences than sequencing 
error rate are OK

• To make a smaller portion of the genome appear repetitive, 
try to:
– Increase read length
– Decrease sequencing error rate



Different strategies of repeat resolution

From: Miller et al. Genomics 95 (2010) 315–327 

Read threading
(repeat length < read length)

Mate threading
(repeat length < paired end distance)

Path exclusion
(paired end distance is 
used to exclude longer 
paths)



Velvet deals with repeats using its ‘Breadcrumb’ algorithm

Ø Determine insert length distribution and decide on a cutoff length longer than practically all inserts
Ø Identify ‘long nodes’ A and B which lengths exceed length cutoff
Ø use read pairs to identify neighboring long nodes (make sure to understand relevance of length cutoff)
Ø Identify reads mapping to the long node A
Ø Flag nodes containing the corresponding read pairs
Ø Perform read mapping for long node B
Ø Identify the consistently paired nodes
Ø Simplify the graph to obtain in the best case a linear path from A to B (error correction can be applied)

A B



The Breadcrumb algorithm (mate threading)

Ø Determine insert length distribution and decide on a cutoff length longer than practically all inserts
Ø Identify ‘long nodes’ A and B which lengths exceed length cutoff
Ø use read pairs to identify neighboring long nodes (make sure to understand relevance of length cutoff)
Ø Identify reads mapping to the long node A
Ø Flag nodes containing the corresponding read pairs
Ø Perform read mapping for long node B
Ø Identify the consistently paired nodes
Ø Simplify the graph to obtain in the best case a linear path from A to B (error correction can be applied)

A B



Resolution of repeats with short read pairs
Breadcrumb algorithm (BC)

• determine insert length distribution
• determine cutoff length longer than practically all inserts and designate as ‘long 

nodes’ such nodes in the graph that are longer than the cutoff length. Thus, very 
few read pairs span over such long nodes!

• Read pairs are used to pair up neighboring ‘long nodes’ A and B. The previous 
cutoff ensures that no intervening ‘long node’ can be missed.

• So far, no test for consistency is applied. Thus, the pairing of ‘long nodes’ can be 
ambiguous. However, ambiguously paired nodes are ignored in the next step.

• For each read starting in a paired ‘long node’ BC identifies and flags the node (now 
considering all nodes!) containing its mate. If a unique neighboring long-node 
exists, then this procedure is repeated for the other long node. 

• If the flags results in a linear path from A to B all flagged nodes can be merged. 
Otherwise a Tour-Bus like process can be applied for correcting remaining errors. 
Likewise, long nodes connected by <5 read pairs are not joined. 

• It may not be entirely obvious by now, but INSERT SIZE of the sequencing library is 
a crucial parameter for sequence assembly!


