Algorithms in Sequence Analysis 4

—
N

The assembly problem...

Different approaches to the sequence assembly
problem

a v b v
¥ i
GGCGTGC
[} RN
B e > ATGGCGT TGCAA
(9] Short-rea g TGCAATG
i IR LS
< 5 S sequencing CAAtdee
(GGCGTGC | (CAATGGC] 11

ATGGCGT
Genome: ATGGCGTGCAATGGCGT

Vertices are k-mers

. ... Vertices are (k-1)-mers
Edges are pairwise alignments .-~

“*-.. Edges are k-mers

Genome: ATGGCGTGCAATG

Hamiltonian cycle
Visit each vertex once
(harder to solve)

modfied from Compeau et al. (2011) Nature Biotechnology 29(11)

mer approaches

\

/Overlap based assembly

read identity is maintained
intuitive

Reads can be organized in an overlap graph
Graph complexity increases with coverage,
thus read redundancy inflates the graph /

<

read identity is (temporarily)
lost...

Reads are organized in
deBruijn graphs

Graph complexity depends on
Kmer size

Graph complexity is (by and
large) independent from
coverage, read redundancy is
naturally handled

repeats are represented only
once in the graph with explicit

links to the different start and
\end points /

>

Eulerian cycle
Visit each edge once
(easier to solve)

Genome assembly abstracted to the problem of finding a
shortest superstring

0000110010111101

l Extract all words

0000, 0001, 0011, 0110, 1100, 1001, 0010, 0101, 1011,01112,1111, 1110, 1101, 1010, 0100, 1000
Extract all k-1 words and use as nodes
Connect two nodes if they form an observed kmer
[l Find the Eulerian cycle/path through the graph

0011
@ 0010 1011
' al 1010
IV
0001 XV 0111

1001 | VI | 0110

il
XVI 0000

0101

1000
Xl
XV / 0100 1101
1100

Passing through the edges by following the roman numbers
reconstructs the superstring using each word exactly once!

[
0011

1001

V
1100

I: 0000, Il: 0001, 1ll: 0011; IV: 0110; V: 1100; VI: 1001; VII: 0010; VIII: 0101; IX: 1011; X: 0111; XI: 1111,
XII: 1110; XI1l: 1101, XIV: 1010; XV: 0100; XVI: 1000

1 0000110010111101 |

De Bruijn Graph Example
Shred reads into k-mers (k = 3)

Read 1 Read 2
A G A C C A A A
G A C
A C C
cC Cc A
cC A A
A A A A
GG GA ACT. _ CT TAA GAC _ ACC _ CCA _ CAA _ AAA
GG GA AC cT TA AA GA AC cc CA AA AA

(1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x)

De Bruijn Graph Example

Merge vertices labeled by identical (k-1)-mers

Read 1: o—botso—s0—s0

GG GA AC cT TA AA
(1x) (1) (1) (1x) (1x) (1x)
Read 2: O1>0—>0—>0—pPO—1>0
GA AC ccC CA AA AA
(1x) (1x) (1x) (1x) (1x (1x)
Resulting Graph: Oo—>0 >O0—>0 >0
GG GA AC cT TA A AA
(1x (2x) (2x) 1x) (1x) (2x) (1x)
cC CA

(1x) (1x)

Basic concepts of de Bruijn graph based assemblers

 The sequence is treated as a consecutive string of words of
length K

* Sequence reads are no longer considered to represent a
consecutive string of nucleotides. Thus read length as well as
read overlap become, in principle, irrelevant!

e Sequence reads are only used to identify words of length K
occurring in the sequence?

* Given perfect data — error-free K-mers providing full coverage3
and spanning every repeat — the K-mer graph would be a de
Bruijn graph and it would contain an Eulerian path, that is, a
path that traverses each edge exactly once

1 This is of course not entirely true. Make sure to understand where the overlap matters
2 This is only true for the graph construction. When it comes to finding the path through the graph, read identity does matter
3 every K-mer that occurs in the original sequence is represented in the K-mer list extracted from the reads

The magic ‘Kmer’ gives most users of graph based assembly algorithms
a very hard time as they have to decide on the size of K.

To give an informed statement we need to make sure to understand what K should represent
and what the algorithmic requirements of de Bruijn graph assemblers are

Considering the size of K

AGACTAGAGAATTGCGATAG

L4 N
)
v

A sequence of length 20 contains 11 different words of length 10!

Now, consider the sequence is spanned by 2 reads of length 13:

T: AGACTAGAGAATTGCGATAG
R1: AGACTAGAGAATT
R2: AGAATTGCGATAG

It is easy to see that not all 11 words of length 10 can be reconstructed with the two reads.
This violates the key assumption of the de Bruijn graphs

It is also easy to see that reducing K ameliorates the problem and eventually gets rid of it
(just consider K=1...)

Kmer coverage depends on K and read coverage and
read start point distribution

AGACCGTAACTTTAAAGGGCGAC k=4 Kmer k=g Kmer
AGAC covezrage covelrage
AGACCGTA
AGAC GACC 1 GACCGTAA 1
ACCG 1 ACCGTAAC 1
AGACCGTAACT CCGT 1 CCGTAACT 1
CGTA 2 CGTAACTT 1
CGTAACTTTAAA GTAA 2 GTAACTTT 1
TAAC 2 TAACTTTA 1
TTAAAGGGC GAC AACT 2 AACTTTAA 1
ACTT 1 ACTTTAAA 1
GGGC GAC CTTT 1 CTTTAAAG 0
. . TTTA 1 TTTAAAGG 0
average read coverage (per position): 2 TR 2 TTAAAGGE 1
TAAA 2 TAAAGGGC 1
AAAG 1 AAAGGGCG 1
AAGG 1 AAGGGCGA 1
AGGG 1 AGGGCGAC 1
GGGC 2
GGCG 2
GCGA 2
CGAC 2

Coverage and Kmer coverage

 Coverage, a.k.a. read depth is the number of reads covering on average a position in
the sequenced template. This value is invariant for a given experiment

File Genomes View Tracks Regions Tools GenomeSpace Help

I Aug20... H tig00000122_pilon [00000122, _pilon:782,215-784,182 Go ¥ <« » @; | =@ | (ERERARRRRARE IRRRRNS
C o n t i g S e q u e n C e é L "Z“\W h L “u\nu i L mv.\nn i L mvu\m i I ‘:jj\n:; [} mv‘;mw 1 m“‘lnn * 1 m"lnn * L "“n\nu * L
O)dof d N —— r ‘! ‘ |)
Naﬂopore E .
Coverage f | | Sequence
distributions ¢ : reads
AhJI??if)a 1 :
!! -

 Kmer Coverage is the number of reads a given Kmer is
represented in. The value ranges from a minimum of 1
to a maximum of the number of sequence reads and
depends on the Kmer size.

Frequency
4e+06 6e+06 B8e+06
1 1 L

2e+06
1

0e+00
L

0 12 26 40 54 68 82 96 112 130 148 166 184

Kmer coverage

Kmer coverage distributions tend to be
at least bi-modal

Kmers introduced by sequencing errors (they do not occur
in the genome)

1e+07
|

8e+06
|

‘Genomic’ Kmers

Frequency
6e+06
1

4e+06
1

2e+06
|

Kmers in repeats

/

0 12 26 40 54 68 82 96 112 130 148 166 184

0e+00
|

Kmer coverage plots for two different values of K using the same
(metagenomic) data sets

2.00407

Kmers introduced by sequencing error Kmers introduced by sequencing error

/ // Alga Kmers overlap in

their frequency with
fungal Kmers Kmers introduced by the
sequencing error. They
will be ignored. Thus, we
fail to reconstruct the
algal Kmers algal genome although
the informationis in
principle there!

1.504+08

1.50407
1

We have information to reconstruct
both genomes!

1.0e+08
1

Frequency
Frequency

1.00407

5.00+07

algal Kmers

/ /fungal Kmers

0 12 26 40 54 68 82 96 112 130 148 166 184

5.00406
1

0.0e+00
0.02400

0 12 26 40 54 68 B2 96 112 130 148 166 184

what happens if we increase K?

K=51 i > K=151

The Kmer coverage is a function of the read coverage and the Kmer length. Thus,
even when the read coverage is way above 1, long Kmers may occur in only one or
two reads, having thus the same occurrence frequency as Kmers introduced due to
seguencing errors.

Short read assembly with Velvet

SENOM
ESEARCH

CSHL Press | Journal Home | Subscriptions | eTOC Alerts | BioSupplyNet

Genome Res. 2008 May; 18(5): 821-829. PMCID: PMC2336801
doi: 10.1101/gr.074492.107

Velvet: Algorithms for de novo short read assembly using de Bruijn
graphs

Daniel R. Zerbino and Ewan Birney1

Author information » Article notes » Copyright and License information »

Velvet: Graph construction

Kmer Read-Id Offset
Rev. complement

1. Read hashing with Kmer size of 5. TAGAC Read1 0
. GTCTA 6

Record for each Kmer also its rever
AGACT Readl 1
complement. AGTCT 5
GACTG Readl 2
CAGTC 4
Read 1 TAGACATGATTG ACTGA Read1l 3
Read 2: TAGACTG TeAGT ?
. CTGAT Read1l 4
Read 3: ACTGATTG Crent ;
Read 4: ATTGACCA AT -]
Read 5:ATTGCC... AATCA 1
GATTG Readl 6
CAATG 0
ATTGA Read4 0
TCAAT 3
TTGAC Read4 1
GTCAA 2
TGACC Read4 2
GGTCA 1
GACCA Read4 3
TGGTC 0
ATTGC Read5 0
GCAAT 0
TTGCC Read5 1
GGCAA 21

1 Note, read 5 is not given in full length, hence the ?’

Velvet: Graph construction

Kmer Read-Id Offset
Rev. complement

1. Read hashing with Kmer size of 5. TAGAC Read1 0
. GTCTA 6

Record for each Kmer also its reverse
AGACT Readl 1
complement. AGTCT 5
GACTG Readl 2
CAGTC 4
Read 1: TAGACT TTG ACTGA Read1l 3
Read 2: TAGACTG TeAGT ?
. CTGAT Read1l 4
Read 3: ACTGATTG Crent ;
Read 4: ATTGACCA AT -]
Read 5:ATTGCC... AATCA 1
GATTG Readl 6
CAATG 0
ATTGA Read4 0
TCAAT 3
TTGAC Read4 1
GTCAA 2
TGACC Read4 2
GGTCA 1
GACCA Read4 3
TGGTC 0
ATTGC Read5 0
GCAAT 0
TTGCC Read5 1
GGCAA ?

Velvet: Graph construction

Kmer Read-Id Offset
Rev. complement

1. Read hashing with Kmer size of 5. TAGAC Read1 0
. GTCTA 6

Record for each Kmer also its rever
AGACT Readl 1
complement. AGTCT 5
GACTG Readl 2
CAGTC 4
Read 1: TAGACTG ACTGA Read1 3
Read 2:ITAGACHG el =
. CTGAT Read1l 4
Read 3: ACTGATTG Crent ;
Read 4: ATTGACCA AT -]
Read 5:ATTGCC... AATCA 1
GATTG Readl 6
CAATG 0
ATTGA Read4 0
TCAAT 3
TTGAC Read4 1
GTCAA 2
TGACC Read4 2
GGTCA 1
GACCA Read4 3
TGGTC 0
ATTGC Read5 0
GCAAT 0
TTGCC Read5 1
GGCAA ?

Velvet: Graph construction

Kmer Read-Id Offset
Rev. complement

1. Read hashing with Kmer size of 5. TAGAC Read1 0
. GTCTA 6

Record for each Kmer also its reverse
AGACT Readl 1
complement. AGTCT 5
GACTG Readl 2
CAGTC 4
Read 1: TAGACTGATTG ACTGA Read1l 3
Read 2: TAGACTG el =
. CTGAT Read1l 4
Read 3: ACTGATTG Crent ;
Read 4 ATTGACCA AT -]
Read 5:ATTGCC... AATCA 1
GATTG Readl 6
CAATG 0
ATTGA Read4 0
TCAAT 3
TTGAC Read4 1
GTCAA 2
TGACC Read4 2
GGTCA 1
GACCA Read4 3
TGGTC 0
ATTGC Read5 0
GCAAT 0
TTGCC Read5 1
GGCAA ?

Velvet: Graph construction

Kmer Read-Id Offset
Rev. complement

2. Rewrite reads with original Kmers TAGAC Read1 0
GTCTA 6
AGACT Readl 1
AGTCT 5
Read 1: TAGACTGATTG GACTG Read1 2
1.0(1.1]1.2]1.3|1.4|1.5|1.6 CAGTC 4
Read 2: TAGACTG e Read? ;
1O|11|12 CTGAT Readl 4
Read 3: ACTGATTG ATCAG 2
TGATT Readl 5
1.3]1.4|1.5|1.6 TeAT! €a >
Read 4: ATTGACCA CATTG feadl .
4.014.114.2|4.3 CAATG 0
Read 5: ATTGCC... ATTGA Read4 0
TCAAT 3
5.0|5.1...
TTGAC Read4 1
GTCAA 2
TGACC Read4 2
GGTCA 1
GACCA Read4 3
TGGTC 0
ATTGC Read5 0
GCAAT 0
TTGCC Read5 1
GGCAA 71

1 Note, read 5 is not given in full length, hence the ?’

Velvet: Graph construction

3. Record for each read which of its original -

Kmers is overlapped by subsequent

reads (Point 5)

Read 1: TAGACTGATTG
1.0|1.1]1.2|1.3]|1.4]1.5|1.6
Read 2: TAGACTG
1.0|1.1]1.2
Read 3: ACTGATTG
1.3|1.4]|1.5|1.6
Read 4: ATTGACCA
4.0|4.1|4.2]4.3
Read 5: ATTGCC...
5.0(5.1...

/Cut the chain of ordered original Kmers\
each time an overlap with another read
starts or ends. For each uninterrupted
sequence of original Kmers a node is

Kcreated. Y,

Read-Id

Readl

Readl

Readl

Readl

Readl

Readl

Readl

Read4

Read4

Read4

Read4

Read5

Read5

Position

0

1

2

Occurrence

Read?2

Read?2

Read?2

Read3

Read3

Read3

Read3

™ Nodel

= Node2

= Node3

==

— Node4

Constructing the graph

Node3
[: |
?’ O O ¥
?"§<$
~ACCA
7 AL YYD
& S © FRS
W Ty ‘% o ©
Sy o &’ z/, ,,/ ‘So&‘g& QQ
CTG F---—-- »ATTG(el
X
T 2 R Y PU—— I Y D ﬁ:\\ \\ é@i&o
&Q Q‘A' ‘&f) 's) ‘&@@ \\\\\ \\\~ Q
S S AN
P73 PP . Wcc
i J i J Y
¥ Y N IV
Nodel Node?2 o) ¢§>
Rl
Node4

modified from Zerbino and Birney (2008) Genome Res 18

Graph simplification

Simplification: The algorithm so far results in blocks (uninterrupted runs of
original Kmers) that occur in a linear arrangement (chain). Thus, connect
adjacent nodes A and B whenever A has only one outgoing edge that leads to
B and B has only a single incoming edge.

&Y’«z?’oc’oo?’
Q Q
7706
~ACCA
’,,"” _- L ¥ ¥ DO
COC/?’& &Cﬁ@ Q&&@&Cﬁ ”’,’ ” ,a
'Y’ 6 ?’ & C9 ,f” ’,” Q§>
Q ?’ 6 & a”’ ¢”’ ‘X‘A“S,& r)
CTG |ATTG }a:: L 270
V II :) III f) V D }(N\NNNN NNN‘\NNN ®®®i®oo
P 65& & ‘&‘& Q @ @ ~\\\ e &
PP SYLI ~. ~.
AT PV .. MWCc
N
L

modified from Zerbino and Birney (2008) Genome Res 18

Velvet: Initial read processing and graph construction

hash reads using the pre-defined kmer size: smaller Kmers increase
connectivity of the graph but also the number of ambiguous repeats

record for each observed Kmer the id of the first read containing this
Kmer and the position of the Kmer.

record each Kmer together with its reverse complement (typically odd
Kmer sizes are used to avoid that palindromes (e.g. GAATTC) confuse
graph construction).

re-write each read as a set of original Kmers -> Roadmap

build 2nd database with the information for each read which of its original
Kmers are overlapped by subsequent reads. Cut the chain of ordered
original Kmers each time an overlap with another read starts or ends. For

each uninterrupted sequence of original Kmers a node is created.

Trace reads through the graph using the roadmap.

In brief: Information about Kmer-read association is maintained
throughout the de Bruijn graph construction

Velvet: Error removal

* Naive approach: use deviation from expected coverage! to identify and
remove ‘errors’ (sequencing errors and polymorphisms).

* Velvet focuses on topological features:

— tips due to errors at the edge of reads

— bulges due to internal read errors
— erroneous connections due to errors in the library preparation (chimera)

lis it clear to you how to generate this expectation?

Removal of Tips

A tip is a chain of nodes that is disconnected on one end

A tip will be removed if its length | is < 2K. Thus, long tips will be retained as they, most likely,
represent genuine sequence.

a minority count criterion is applied. Thus, from two possible paths the more common oneis
retained.

Tips are removed in an iterative manner until no more tips fulfill the removal criterion.
Subsequent to tip removal the graph is simplified again (joining of adjacent nodes with
unambiguous connection. 1<2K?

l_‘_\
2 A
- - -

6

\ ! !

number of reads supporting an edge

-> remove B’ if its length is smaller than 2K

-> remove B’ if less reads support the A->B’ connection than the A->B connection.
Remember that Velvet traces the reads in the graph!

Removal of Bubbles

* Two paths are redundant if they start and end at the same nodes and contain similar sequences.
* Velvet removes such bubbles with the ‘tour bus’ algorithm
 asimple sequence identity and length threshold is applied to select paths for simplification

— start from an arbitrary node with out-degree larger 1 and progress along the graph visiting nodes in
order of increasing distance from the start.

— The distance between two consecutive nodes X and Y is given by the length of s(Y) divided by the

number of reads mapped to the edge between X and Y. Thus, paths represented in many reads result
in shorter distances.

xt_._J-h_&

‘EEEE
‘:—E

A

Pathl: A-B’-C’-D-E with distance PL1

Removal of Bubbles

* Two paths are redundant if they start and end at the same nodes and contain similar sequences.
* Velvet removes such bubbles with the ‘tour bus’ algorithm
 asimple sequence identity and length threshold is applied to select paths for simplification

— start from an arbitrary node with outdegree larger 1 and progress along the graph visiting nodes in
order of increasing distance from the start.

— The traversal through the graph is repeated from the same starting node but now following an
alternative path and stopping when an already visited node is reached.

xt_;u

EEEE
‘:—E

A

Pathl: A-B’-C’-D-E with distance PL1

Path2: A-B-C-D with distance PL2. Note that path stops at D, as this node has been
visited before

Removal of Bubbles

* Two paths are redundant if they start and end at the same nodes and contain similar sequences.

* Velvet removes such bubbles with the ‘tour bus’ algorithm
 asimple sequence identity and length threshold is applied to select paths for simplification

start from an arbitrary node and progress along the graph visiting nodes in order of increasing
distance from the start.

The traversal through the path stops as soon as a node ‘D’ is visited that has been passed in a
previous path.

A backtrace starts for both paths ending at ‘D’ to find their closest common ancestor ‘A’.

The sequences represented by B’ — C’ and by B — C, respectively, are extracted, aligned and their
similarity is assessed.

xt_;u

EEEE
‘:—E

A

Sequence alignment and assessment of similarity

Removal of Bubbles

* Two paths are redundant if they start and end at the same nodes and contain similar sequences.

* Velvet removes such bubbles with the ‘tour bus’ algorithm

 asimple sequence identity and length threshold is applied to select paths for simplification

start from an arbitrary node and progress along the graph visiting nodes in order of increasing
distance from the start.

The traversal through the path stops as soon as a node ‘D’ is visited that has been passed in a
previous path.

A backtrace starts for both paths ending at ‘D’ to find their closest common ancestor ‘A’.

The sequences represented by B’ — C’ and by B — C, respectively, are extracted, aligned and their
similarity is assessed.

If the similarity exceeds a predefined threshold the shorter path is chosen (A-B-C-D) and the
alternative path is discarded. Note, this metric implicitly imposes a majority vote in choosing the

consensus sequence.

[T TITT
‘:r w C m E P

:—E

Sequence similarity exceeds the threshold

Removal of Bubbles

* Two paths are redundant if they start and end at the same nodes and contain similar sequences.

* Velvet removes such bubbles with the ‘tour bus’ algorithm

 asimple sequence identity and length threshold is applied to select paths for simplification

start from an arbitrary node and progress along the graph visiting nodes in order of increasing
distance from the start.

The traversal through the path stops as soon as a node ‘D’ is visited that has been passed in a
previous path.

A backtrace starts for both paths ending at ‘D’ to find their closest common ancestor ‘A’

The sequences represented by B’ — C’ and by B — C, respectively, are extracted, aligned and their
similarity is assessed.

If the similarity exceeds a predefined threshold the shorter path is chosen (A-B-C-D) and the
alternative path is discarded. Note, this metric implicitly imposes a majority vote in choosing the
consensus sequence.

AT

~

' y
\ /
\ ,'
) ¢

nnBnm
-

Sequence similarity exceeds the threshold

Removing Erroneous Connections (Chimera problem)

* After completion of the tour bus algorithm the graph is checked for low
coverage connections

* Given the law of large numbers any genuine node is expected to be
covered by the expected number of reads

* remaining low coverage nodes are likely to flag artificial overlaps due to
chimeric reads

* such low-coverage nodes are simply removed and the graph is disrupted

20* 23 5 27 24

b e e b e e b e e b e e

Done with the first step!

*Numbers denote number of reads covering a given node

The problem with repeats

Merge reads up to potential repeat boundaries

Dealing with repeats

Repeat Types

Low-Complexity DNA (e.g. ATATATATACATA...)

Microsatellite repeats (a;...a,)N where k ~ 3-6

(e.g. CAGCAGTAGCAGCACCAG)

Transposons/retrotransposons

— SINE

(e.g.,

— LINE

— LTR retroposons
each end

Gene Families

Short Interspersed Nuclear Elements
Alu: ~300 bp long, 10° copies)

Long Interspersed Nuclear Elements
~500 - 5,000 bp long, 200,000 copies

Long Terminal Repeats (~700 bp) at

genes duplicate & then diverge

Segmental duplications ~ ~very long, very similar copies

How big is the problem?
A human example

UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly

move | <<< || << || [>> >>> | zoom in | 1.5x |[3x |[10x |[base | ZoOom out | 1.5x || 3x || 10x

chr21 32,995,484-33,084,683 89,200 bp enter position, gene symbol or search terms ‘ | go
chral (gq22.11) 21p13 21p11.2 21g21.1
Scale 28 kb} | heto
chrai: | 33, 805, 006| 33, 010, 06| 33, 815, eee| 33, 020, 066| 33, 625, eee| 33, 630, aeelss 835, 006| 33, 040, 00| 33, 045, 60e| 33, 650, aeelss 9SS, 806| 33, 060, 00| 33, 065, 006| 33, 070, ees| 33, 075, 00| 33, 050, aae|
UCSC Genes (RefSeqy, GenBank, CCDS, Rfam, tRNAs & Comparative Genomics)
BCA41449 mm———i-di—e scAF4 ol | { { - 13-
S0D1 st tia SCAF4
SCAF4 wiil} i i R e
J SCAF+ uil i i i } P
L
J RefSeq Genes
RefSeq Genes L t +H——m i + - HH——+
Fublications: Sequences in scientific articles
Sequences | |
J SNPs (Al Il | | | | (I N Y|) O L | [| | 11
Human mRNAsS from GenBank
J Human mRNAS | HH—i——1 = -_t——t+—+t+H—+H—HH———
Human ESTs That Have Been Spliced
_J Spliced ESTs — | i ¥ +—Ha—++H—H—kH—H—
Simple Nucleoti de Polgmomon sms (dbSNF 137) Foul Samp 1es
J common SNFSCAZZX I I L0 LT W IR rene s nn 0 v e wieen e o mwew e II BT mw v nn IIII IW LRI fr II IIIIIIIIII II III IR venn - Wenr veer Fer e mwn wne e v remnne e
Repeating Elements by RepeatMasker
SINE 11 LU O O U0 DR AR B DL R AR A 1 1in 1 1 '11m | LI Y | 1
LINE | ITTRl i e | | 1
LTR 1l 1 e I (1al | I | |
DNA 1 | | L 1
Simple | | | |1 I Il |
Low Complexity | | | | | | | I |
satellite
RNA |
Other
L Unknown
ove start Click on a feature for details. Click or drag in the base position track to zoom in. Click side bars for track options. Drag side bars or labels up or ‘move end
< J20 [[>] down to reorder tracks. Drag tracks left or right to new position. (<J20 |[>]

| track search || default tracks || default order || hide all | | add custom tracks | | track hubs | | configure || reverse || resize | | refresh |

Use drop-down controls below and press refresh to alter tracks displayed.
Tracks with lots of items will automatically be displayed in more compact modes.

| collapse all | | expand all |

All these are annotated repeats in the human genome

http://www.genome.ucsc.edu/cgi-bin/hgGateway?hgsid=335878521

http://www.genome.ucsc.edu/cgi-bin/hgGateway?hgsid=335878521

Repeats, Errors, and Contig Lengths

Repeats shorter than read length are OK

Repeats with more base pair differences than sequencing
error rate are OK

To make a smaller portion of the genome appear repetitive,
try to:

— Increase read length

— Decrease sequencing error rate

Different strategies of repeat resolution

Read threading
(repeat length < read length)

(before)

f%

(after)

Mate threading

/M"""

A,
TR

(repeat length < paired end distance)

Path exclusion

(paired end distance is
used to exclude longer
paths)

it

i

< 4

—_—

From: Miller et al. Genomics 95 (2010) 315-327

YVVVVYVYVVYVYY

Velvet deals with repeats using its ‘Breadcrumb’ algorithm

Determine insert length distribution and decide on a cutoff length longer than practically all inserts
Identify ‘long nodes’ A and B which lengths exceed length cutoff

use read pairs to identify neighboring long nodes (make sure to understand relevance of length cutoff)
Identify reads mapping to the long node A

Flag nodes containing the corresponding read pairs

Perform read mapping for long node B

Identify the consistently paired nodes @)

Simplify the graph to obtain in the best case a linear path from A to B (error correction can be applied)

The Breadcrumb algorithm (mate threading)

o
s~

YVVVVYVYVVYVYY

» » » »
L > L >

[

SRR R B
_ -

Determine insert length distribution and decide on a cutoff length longer than practically all inserts
Identify ‘long nodes’ A and B which lengths exceed length cutoff

use read pairs to identify neighboring long nodes (make sure to understand relevance of length cutoff)
Identify reads mapping to the long node A

Flag nodes containing the corresponding read pairs

Perform read mapping for long node B

Identify the consistently paired nodes @)

Simplify the graph to obtain in the best case a linear path from A to B (error correction can be applied)

Resolution of repeats with short read pairs
Breadcrumb algorithm (BC)

determine insert length distribution

determine cutoff length longer than practically all inserts and designate as ‘long
nodes’ such nodes in the graph that are longer than the cutoff length. Thus, very
few read pairs span over such long nodes!

Read pairs are used to pair up neighboring ‘long nodes’ A and B. The previous
cutoff ensures that no intervening ‘long node’ can be missed.

So far, no test for consistency is applied. Thus, the pairing of ‘long nodes’ can be
ambiguous. However, ambiguously paired nodes are ignored in the next step.

For each read starting in a paired ‘long node’ BC identifies and flags the node (now
considering all nodes!) containing its mate. If a unique neighboring long-node
exists, then this procedure is repeated for the other long node.

If the flags results in a linear path from A to B all flagged nodes can be merged.
Otherwise a Tour-Bus like process can be applied for correcting remaining errors.
Likewise, long nodes connected by <5 read pairs are not joined.

It may not be entirely obvious by now, but INSERT SIZE of the sequencing library is
a crucial parameter for sequence assembly!

