
Algorithms in Sequence Analysis 4

The assembly problem…

JLFB

JLFB

Different approaches to the sequence assembly
problem

modfied from Compeau et al. (2011) Nature Biotechnology 29(11)

Overlap based assembly
Ø read identity is maintained
Ø intuitive
Ø Reads can be organized in an overlap graph
Ø Graph complexity increases with coverage,

thus read redundancy inflates the graph

Kmer approaches
Ø read identity is (temporarily)

lost…
Ø Reads are organized in

deBruijn graphs
Ø Graph complexity depends on

Kmer size
Ø Graph complexity is (by and

large) independent from
coverage, read redundancy is
naturally handled

Ø repeats are represented only
once in the graph with explicit
links to the different start and
end points

0011

0010

0101

1011
1010

1101

0111

1111 1110

1100

1001
0001

1000
0000

0110

0100

I

II

III

IV

V

VI

VII

VIII

IX
X

XI

XII
XIII

XIV

XV

XVI

0000110010111101

0000, 0001, 0011, 0110, 1100, 1001, 0010, 0101, 1011, 0111, 1111, 1110, 1101, 1010, 0100, 1000

Extract all words

001 011

100 110

000 010 101 111

Extract all k-1 words and use as nodes
Connect two nodes if they form an observed kmer
Find the Eulerian cycle/path through the graph

Genome assembly abstracted to the problem of finding a
shortest superstring

001 011

100 110

000 010 101 111

0011

0010

0101

1011
1010

1101

0111

1111 1110

1100

1001
0001

1000
0000

0110

0100

I

II

III

IV

V

VI

VII

VIII

IX
X

XI

XII
XIII

XIV

XV

XVI

Passing through the edges by following the roman numbers
reconstructs the superstring using each word exactly once!

I: 0000, II: 0001, III: 0011; IV: 0110; V: 1100; VI: 1001; VII: 0010; VIII: 0101; IX: 1011; X: 0111; XI: 1111;
XII: 1110; XIII: 1101; XIV: 1010; XV: 0100; XVI: 1000

0000110010111101

De Bruijn Graph Example
Shred reads into k-mers (k = 3)

5

G G A C T A A

G G A

G A C

A C T

C T A

T A A

G A C C A A A

G A C

A C C

C C A

C A A

A A A

Read 1 Read 2

GG
(1x)

GA
(1x)

AC
(1x)

CT
(1x)

TA
(1x)

AA
(1x)

GGA GAC ACT CTA TAA

GA
(1x)

AC
(1x)

CC
(1x)

CA
(1x)

AA
(1x)

AA
(1x)

GAC ACC CCA CAA AAA

De Bruijn Graph Example
Merge vertices labeled by identical (k-1)-mers

6

Read 1:

Read 2:

Resulting Graph:
GG
(1x

GA
(2x)

AC
(2x)

CT
(1x)

TA
(1x)

AA
(2x)

CC
(1x)

CA
(1x)

AA
(1x)

GG
(1x)

GA
(1x)

AC
(1x)

CT
(1x)

TA
(1x)

AA
(1x)

GA
(1x)

AC
(1x)

CC
(1x)

CA
(1x)

AA
(1x

AA
(1x)

Basic concepts of de Bruijn graph based assemblers

• The sequence is treated as a consecutive string of words of
length K

• Sequence reads are no longer considered to represent a
consecutive string of nucleotides. Thus read length as well as
read overlap become, in principle, irrelevant1

• Sequence reads are only used to identify words of length K
occurring in the sequence2

• Given perfect data – error-free K-mers providing full coverage3

and spanning every repeat – the K-mer graph would be a de
Bruijn graph and it would contain an Eulerian path, that is, a
path that traverses each edge exactly once

1 This is of course not entirely true. Make sure to understand where the overlap matters
2 This is only true for the graph construction. When it comes to finding the path through the graph, read identity does matter
3 every K-mer that occurs in the original sequence is represented in the K-mer list extracted from the reads

The magic ‘Kmer’ gives most users of graph based assembly algorithms
a very hard time as they have to decide on the size of K.

To give an informed statement we need to make sure to understand what K should represent
and what the algorithmic requirements of de Bruijn graph assemblers are

Considering the size of K

AGACTAGAGAATTGCGATAG

A sequence of length 20 contains 11 different words of length 10!

Now, consider the sequence is spanned by 2 reads of length 13:

AGACTAGAGAATTGCGATAG
AGACTAGAGAATT

AGAATTGCGATAG

T:
R1:
R2:

It is easy to see that not all 11 words of length 10 can be reconstructed with the two reads.
This violates the key assumption of the de Bruijn graphs

It is also easy to see that reducing K ameliorates the problem and eventually gets rid of it
(just consider K=1…)

Kmer coverage depends on K and read coverage and
read start point distribution

AGACCGTAACTTTAAAGGGCGAC

AGAC

AGACCGTAACT

CGTAACTTTAAA

TTAAAGGGCGAC
GGGCGAC

average read coverage (per position): 2

AGAC
GACC
ACCG
CCGT
CGTA
GTAA
TAAC
AACT
ACTT
CTTT
TTTA
TTAA
TAAA
AAAG
AAGG
AGGG
GGGC
GGCG
GCGA
CGAC

2
1
1
1
2
2
2
2
1
1
1
2
2
1
1
1
2
2
2
2

K=4 Kmer
coverage

AGACCGTA
GACCGTAA
ACCGTAAC
CCGTAACT
CGTAACTT
GTAACTTT
TAACTTTA
AACTTTAA
ACTTTAAA
CTTTAAAG
TTTAAAGG
TTAAAGGG
TAAAGGGC
AAAGGGCG
AAGGGCGA
AGGGCGAC

1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1

K=8 Kmer
coverage

Kmer coverage
Fr

eq
ue

nc
y

Coverage and Kmer coverage

• Coverage, a.k.a. read depth is the number of reads covering on average a position in
the sequenced template. This value is invariant for a given experiment

• Kmer Coverage is the number of reads a given Kmer is
represented in. The value ranges from a minimum of 1
to a maximum of the number of sequence reads and
depends on the Kmer size.

Coverage
distributions

Oxford

Nanopore

Illumina

Contig sequence

Sequence
reads

Kmer coverage distributions tend to be
at least bi-modal

Kmers introduced by sequencing errors (they do not occur
in the genome)

‘Genomic’ Kmers

Kmers in repeats

Kmer coverage plots for two different values of K using the same
(metagenomic) data sets

The Kmer coverage is a function of the read coverage and the Kmer length. Thus,
even when the read coverage is way above 1, long Kmers may occur in only one or
two reads, having thus the same occurrence frequency as Kmers introduced due to
sequencing errors.

K=51 K=151

Kmers introduced by sequencing error Kmers introduced by sequencing error

algal Kmers

fungal Kmers
We have information to reconstruct

both genomes!

Alga Kmers overlap in
their frequency with

Kmers introduced by the
sequencing error. They

will be ignored. Thus, we
fail to reconstruct the

algal genome although
the information is in

principle there!
fungal Kmers

algal Kmers

what happens if we increase K?

Short read assembly with Velvet

Velvet: Graph construction

Read 1: T A G A C T G A T T G
Read 2: T A G A C T G
Read 3: A C T G A T T G
Read 4: A T T G A C C A
Read 5: A T T G C C…

Kmer
Rev. complement

Read-Id Offset

TAGAC
GTCTA

Read1 0
6

AGACT
AGTCT

Read1 1
5

GACTG
CAGTC

Read1 2
4

ACTGA
TCAGT

Read1 3
3

CTGAT
ATCAG

Read1 4
2

TGATT
AATCA

Read1 5
1

GATTG
CAATG

Read1 6
0

ATTGA
TCAAT

Read4 0
3

TTGAC
GTCAA

Read4 1
2

TGACC
GGTCA

Read4 2
1

GACCA
TGGTC

Read4 3
0

ATTGC
GCAAT

Read5 0
0

TTGCC
GGCAA

Read5 1
?1

1. Read hashing with Kmer size of 5.
Record for each Kmer also its reverse
complement.

1 Note, read 5 is not given in full length, hence the ‘?’

Velvet: Graph construction

Read 1: T A G A C T G A T T G
Read 2: T A G A C T G
Read 3: A C T G A T T G
Read 4: A T T G A C C A
Read 5: A T T G C C…

1. Read hashing with Kmer size of 5.
Record for each Kmer also its reverse
complement.

Kmer
Rev. complement

Read-Id Offset

TAGAC
GTCTA

Read1 0
6

AGACT
AGTCT

Read1 1
5

GACTG
CAGTC

Read1 2
4

ACTGA
TCAGT

Read1 3
3

CTGAT
ATCAG

Read1 4
2

TGATT
AATCA

Read1 5
1

GATTG
CAATG

Read1 6
0

ATTGA
TCAAT

Read4 0
3

TTGAC
GTCAA

Read4 1
2

TGACC
GGTCA

Read4 2
1

GACCA
TGGTC

Read4 3
0

ATTGC
GCAAT

Read5 0
0

TTGCC
GGCAA

Read5 1
?

Velvet: Graph construction

Read 1: T A G A C T G A T T G
Read 2: T A G A C T G
Read 3: A C T G A T T G
Read 4: A T T G A C C A
Read 5: A T T G C C…

1. Read hashing with Kmer size of 5.
Record for each Kmer also its reverse
complement.

Kmer
Rev. complement

Read-Id Offset

TAGAC
GTCTA

Read1 0
6

AGACT
AGTCT

Read1 1
5

GACTG
CAGTC

Read1 2
4

ACTGA
TCAGT

Read1 3
3

CTGAT
ATCAG

Read1 4
2

TGATT
AATCA

Read1 5
1

GATTG
CAATG

Read1 6
0

ATTGA
TCAAT

Read4 0
3

TTGAC
GTCAA

Read4 1
2

TGACC
GGTCA

Read4 2
1

GACCA
TGGTC

Read4 3
0

ATTGC
GCAAT

Read5 0
0

TTGCC
GGCAA

Read5 1
?

Velvet: Graph construction

Read 1: T A G A C T G A T T G
Read 2: T A G A C T G
Read 3: A C T G A T T G
Read 4: A T T G A C C A
Read 5: A T T G C C…

1. Read hashing with Kmer size of 5.
Record for each Kmer also its reverse
complement.

Kmer
Rev. complement

Read-Id Offset

TAGAC
GTCTA

Read1 0
6

AGACT
AGTCT

Read1 1
5

GACTG
CAGTC

Read1 2
4

ACTGA
TCAGT

Read1 3
3

CTGAT
ATCAG

Read1 4
2

TGATT
AATCA

Read1 5
1

GATTG
CAATG

Read1 6
0

ATTGA
TCAAT

Read4 0
3

TTGAC
GTCAA

Read4 1
2

TGACC
GGTCA

Read4 2
1

GACCA
TGGTC

Read4 3
0

ATTGC
GCAAT

Read5 0
0

TTGCC
GGCAA

Read5 1
?

Velvet: Graph construction

Read 1: TAGACTGATTG
1.0|1.1|1.2|1.3|1.4|1.5|1.6

Read 2: TAGACTG
1.0|1.1|1.2

Read 3: ACTGATTG
1.3|1.4|1.5|1.6

Read 4: ATTGACCA
4.0|4.1|4.2|4.3

Read 5: ATTGCC…
5.0|5.1…

2. Rewrite reads with original Kmers

Kmer
Rev. complement

Read-Id Offset

TAGAC
GTCTA

Read1 0
6

AGACT
AGTCT

Read1 1
5

GACTG
CAGTC

Read1 2
4

ACTGA
TCAGT

Read1 3
3

CTGAT
ATCAG

Read1 4
2

TGATT
AATCA

Read1 5
1

GATTG
CAATG

Read1 6
0

ATTGA
TCAAT

Read4 0
3

TTGAC
GTCAA

Read4 1
2

TGACC
GGTCA

Read4 2
1

GACCA
TGGTC

Read4 3
0

ATTGC
GCAAT

Read5 0
0

TTGCC
GGCAA

Read5 1
?1

1 Note, read 5 is not given in full length, hence the ‘?’

Velvet: Graph construction

Read 1: TAGACTGATTG
1.0|1.1|1.2|1.3|1.4|1.5|1.6

Read 2: TAGACTG
1.0|1.1|1.2

Read 3: ACTGATTG
1.3|1.4|1.5|1.6

Read 4: ATTGACCA
4.0|4.1|4.2|4.3

Read 5: ATTGCC…
5.0|5.1…

Original Kmer

Read-Id Position Occurrence

Read1 0 Read2

Read1 1 Read2

Read1 2 Read2

Read1 3 Read3

Read1 4 Read3

Read1 5 Read3

Read1 6 Read3

Read4 0 -

Read4 1 -

Read4 2 -

Read4 3 -

Read5 0 -

Read5 1 -

3. Record for each read which of its original
Kmers is overlapped by subsequent
reads (Point 5)

Node1

Node2

Node3

Node4

Cut the chain of ordered original Kmers
each time an overlap with another read
starts or ends. For each uninterrupted
sequence of original Kmers a node is
created.

Constructing the graph

C T G

C T A

TA
GA
C

AG
AC
T

GA
CT
G

A T T G

C A G T

AC
TG
A

CT
GA
T

TG
AT
T

GA
TT
G

A C C A

C A A T

AT
TG
A

TT
GA
C

TG
AC
C

GA
CC
A

C C

A T

AT
TG
C

TT
GC
C

GTCTA

AGTCT

CAGTC

TCAGT

ATCAG

AATCA

CAATC

TCAAT

GTCAA

GGTCA

TGGTC

GCAAT

GGCAA

modified from Zerbino and Birney (2008) Genome Res 18

Node1 Node2

Node3

Node4

Graph simplification

Simplification: The algorithm so far results in blocks (uninterrupted runs of
original Kmers) that occur in a linear arrangement (chain). Thus, connect
adjacent nodes A and B whenever A has only one outgoing edge that leads to
B and B has only a single incoming edge.

GCAAT

GGCAA

C T G

C T A

TA
GA
C

AG
AC
T

GA
CT
G

A T T G

C A G T

AC
TG
A

CT
GA
T

TG
AT
T

GA
TT
G

A C C A

C A A T

AT
TG
A

TT
GA
C

TG
AC
C

GA
CC
A

C C

A T

AT
TG
C

TT
GC
C

GTCTA

AGTCT

CAGTC

TCAGT

ATCAG

AATCA

CAATC

TCAAT

GTCAA

GGTCA

TGGTC

modified from Zerbino and Birney (2008) Genome Res 18

Velvet: Initial read processing and graph construction

1. hash reads using the pre-defined kmer size: smaller Kmers increase
connectivity of the graph but also the number of ambiguous repeats

2. record for each observed Kmer the id of the first read containing this
Kmer and the position of the Kmer.

3. record each Kmer together with its reverse complement (typically odd
Kmer sizes are used to avoid that palindromes (e.g. GAATTC) confuse
graph construction).

4. re-write each read as a set of original Kmers -> Roadmap
5. build 2nd database with the information for each read which of its original

Kmers are overlapped by subsequent reads. Cut the chain of ordered
original Kmers each time an overlap with another read starts or ends. For
each uninterrupted sequence of original Kmers a node is created.

6. Trace reads through the graph using the roadmap.

In brief: Information about Kmer-read association is maintained
throughout the de Bruijn graph construction

Velvet: Error removal

• Naïve approach: use deviation from expected coverage1 to identify and
remove ‘errors’ (sequencing errors and polymorphisms).

• Velvet focuses on topological features:
– tips due to errors at the edge of reads

– bulges due to internal read errors

– erroneous connections due to errors in the library preparation (chimera)

A B C D

B’

A
B

C D

B’

1 is it clear to you how to generate this expectation?

A B X Y

Removal of Tips

• A tip is a chain of nodes that is disconnected on one end
• A tip will be removed if its length l is < 2K. Thus, long tips will be retained as they, most likely,

represent genuine sequence.
• a minority count criterion is applied. Thus, from two possible paths the more common one is

retained.
• Tips are removed in an iterative manner until no more tips fulfill the removal criterion.

Subsequent to tip removal the graph is simplified again (joining of adjacent nodes with
unambiguous connection.

A B C D

B’

-> remove B’ if less reads support the A->B’ connection than the A->B connection.
Remember that Velvet traces the reads in the graph!

-> remove B’ if its length is smaller than 2K

2

6 5 6

number of reads supporting an edge

l<2K?

Removal of Bubbles
• Two paths are redundant if they start and end at the same nodes and contain similar sequences.
• Velvet removes such bubbles with the ‘tour bus’ algorithm
• a simple sequence identity and length threshold is applied to select paths for simplification

– start from an arbitrary node with out-degree larger 1 and progress along the graph visiting nodes in
order of increasing distance from the start.

– The distance between two consecutive nodes X and Y is given by the length of s(Y) divided by the
number of reads mapped to the edge between X and Y. Thus, paths represented in many reads result
in shorter distances.

A
B C D

B’ C’

E

C’’ D’

Path1: A-B’-C’-D-E with distance PL1

Removal of Bubbles
• Two paths are redundant if they start and end at the same nodes and contain similar sequences.
• Velvet removes such bubbles with the ‘tour bus’ algorithm
• a simple sequence identity and length threshold is applied to select paths for simplification

– start from an arbitrary node with outdegree larger 1 and progress along the graph visiting nodes in
order of increasing distance from the start.

– The traversal through the graph is repeated from the same starting node but now following an
alternative path and stopping when an already visited node is reached.

A
B C D

B’ C’

E

C’’ D’

Path1: A-B’-C’-D-E with distance PL1

Path2: A-B-C-D with distance PL2. Note that path stops at D, as this node has been
visited before

Removal of Bubbles
• Two paths are redundant if they start and end at the same nodes and contain similar sequences.
• Velvet removes such bubbles with the ‘tour bus’ algorithm
• a simple sequence identity and length threshold is applied to select paths for simplification

– start from an arbitrary node and progress along the graph visiting nodes in order of increasing
distance from the start.

– The traversal through the path stops as soon as a node ‘D’ is visited that has been passed in a
previous path.

– A backtrace starts for both paths ending at ‘D’ to find their closest common ancestor ‘A’.
– The sequences represented by B’ – C’ and by B – C, respectively, are extracted, aligned and their

similarity is assessed.

A
B C D

B’ C’

E

C’’ D’

Sequence alignment and assessment of similarity

• Two paths are redundant if they start and end at the same nodes and contain similar sequences.
• Velvet removes such bubbles with the ‘tour bus’ algorithm
• a simple sequence identity and length threshold is applied to select paths for simplification

– start from an arbitrary node and progress along the graph visiting nodes in order of increasing
distance from the start.

– The traversal through the path stops as soon as a node ‘D’ is visited that has been passed in a
previous path.

– A backtrace starts for both paths ending at ‘D’ to find their closest common ancestor ‘A’.
– The sequences represented by B’ – C’ and by B – C, respectively, are extracted, aligned and their

similarity is assessed.
– If the similarity exceeds a predefined threshold the shorter path is chosen (A-B-C-D) and the

alternative path is discarded. Note, this metric implicitly imposes a majority vote in choosing the
consensus sequence.

A
B C D E

C’’ D’

B’ C’

Sequence similarity exceeds the threshold

Removal of Bubbles

Removal of Bubbles

A
B C D E

C’’ D’

Sequence similarity exceeds the threshold

• Two paths are redundant if they start and end at the same nodes and contain similar sequences.
• Velvet removes such bubbles with the ‘tour bus’ algorithm
• a simple sequence identity and length threshold is applied to select paths for simplification

– start from an arbitrary node and progress along the graph visiting nodes in order of increasing
distance from the start.

– The traversal through the path stops as soon as a node ‘D’ is visited that has been passed in a
previous path.

– A backtrace starts for both paths ending at ‘D’ to find their closest common ancestor ‘A’.
– The sequences represented by B’ – C’ and by B – C, respectively, are extracted, aligned and their

similarity is assessed.
– If the similarity exceeds a predefined threshold the shorter path is chosen (A-B-C-D) and the

alternative path is discarded. Note, this metric implicitly imposes a majority vote in choosing the
consensus sequence.

Removing Erroneous Connections (Chimera problem)

A B C D E

• After completion of the tour bus algorithm the graph is checked for low
coverage connections

• Given the law of large numbers any genuine node is expected to be
covered by the expected number of reads

• remaining low coverage nodes are likely to flag artificial overlaps due to
chimeric reads

• such low-coverage nodes are simply removed and the graph is disrupted

20* 23 5 27 24

*Numbers denote number of reads covering a given node

Done with the first step!

The problem with repeats

Merge reads up to potential repeat boundaries

!"#"$%&!"'()*

Dealing with repeats

A B

C

D E

Q R S T

A B C D E

Q R S TC

?

Repeat Types
• Low-Complexity DNA (e.g. ATATATATACATA…)

• Microsatellite repeats (a1…ak)N where k ~ 3-6
(e.g. CAGCAGTAGCAGCACCAG)

• Transposons/retrotransposons
– SINE Short Interspersed Nuclear Elements

(e.g., Alu: ~300 bp long, 106 copies)

– LINE Long Interspersed Nuclear Elements
~500 - 5,000 bp long, 200,000 copies

– LTR retroposons Long Terminal Repeats (~700 bp) at
each end

• Gene Families genes duplicate & then diverge

• Segmental duplications ~very long, very similar copies

How big is the problem?
A human example

http://www.genome.ucsc.edu/cgi-bin/hgGateway?hgsid=335878521

All these are annotated repeats in the human genome

http://www.genome.ucsc.edu/cgi-bin/hgGateway?hgsid=335878521

Repeats, Errors, and Contig Lengths

• Repeats shorter than read length are OK

• Repeats with more base pair differences than sequencing
error rate are OK

• To make a smaller portion of the genome appear repetitive,
try to:
– Increase read length
– Decrease sequencing error rate

Different strategies of repeat resolution

From: Miller et al. Genomics 95 (2010) 315–327

Read threading
(repeat length < read length)

Mate threading
(repeat length < paired end distance)

Path exclusion
(paired end distance is
used to exclude longer
paths)

Velvet deals with repeats using its ‘Breadcrumb’ algorithm

Ø Determine insert length distribution and decide on a cutoff length longer than practically all inserts
Ø Identify ‘long nodes’ A and B which lengths exceed length cutoff
Ø use read pairs to identify neighboring long nodes (make sure to understand relevance of length cutoff)
Ø Identify reads mapping to the long node A
Ø Flag nodes containing the corresponding read pairs
Ø Perform read mapping for long node B
Ø Identify the consistently paired nodes
Ø Simplify the graph to obtain in the best case a linear path from A to B (error correction can be applied)

A B

The Breadcrumb algorithm (mate threading)

Ø Determine insert length distribution and decide on a cutoff length longer than practically all inserts
Ø Identify ‘long nodes’ A and B which lengths exceed length cutoff
Ø use read pairs to identify neighboring long nodes (make sure to understand relevance of length cutoff)
Ø Identify reads mapping to the long node A
Ø Flag nodes containing the corresponding read pairs
Ø Perform read mapping for long node B
Ø Identify the consistently paired nodes
Ø Simplify the graph to obtain in the best case a linear path from A to B (error correction can be applied)

A B

Resolution of repeats with short read pairs
Breadcrumb algorithm (BC)

• determine insert length distribution
• determine cutoff length longer than practically all inserts and designate as ‘long

nodes’ such nodes in the graph that are longer than the cutoff length. Thus, very
few read pairs span over such long nodes!

• Read pairs are used to pair up neighboring ‘long nodes’ A and B. The previous
cutoff ensures that no intervening ‘long node’ can be missed.

• So far, no test for consistency is applied. Thus, the pairing of ‘long nodes’ can be
ambiguous. However, ambiguously paired nodes are ignored in the next step.

• For each read starting in a paired ‘long node’ BC identifies and flags the node (now
considering all nodes!) containing its mate. If a unique neighboring long-node
exists, then this procedure is repeated for the other long node.

• If the flags results in a linear path from A to B all flagged nodes can be merged.
Otherwise a Tour-Bus like process can be applied for correcting remaining errors.
Likewise, long nodes connected by <5 read pairs are not joined.

• It may not be entirely obvious by now, but INSERT SIZE of the sequencing library is
a crucial parameter for sequence assembly!

