2025/04/12 09:45 1/2 Whole Genome Shotgun Assembly

Whole Genome Shotgun Assembly

General outline

How to reconstruct a genome sequence from scratch based on a set of whole genome shotgun
sequencing data? Traditionally, we differentiate between two strategies for DNA sequence assembly
(i) the overlap layout based methods, and (ii) the de Bruijn graph based methods (Fig. 1). Overlap

layout consensus approaches are rather easy to explain. Each read represents a consecutive
stretch of the sequenced genome. From this follows that two overlapping reads, i.e. reads where the
end of one read resembles the start of the second read, can be joined to represent a longer segment
of the sequenced genome. The concept of de Bruijn graph based approaches is fundamentally
different. These algorithms aim at reconstructing the shortest superstring that can be built from a list
of words of length k, so called kmers. Sequencing reads, in the first approximation, serve only to
identify kmers occurring in the genome of interest, and are, in principle, no longer considered as
representations of consecutive stretches of the genome under study. This is of course an
oversimplification, but it may help to initially understand the difference between an overlap
consensus based assembler and a de Bruijn graph based assembler.

(]

Figure 1: General approaches to the read assembly problem. a) Sequence reads are generated from a circular (or linear)
genome. b) Overlap layout based assemblers generate an overlap graph from reads whose terminal overlaps display a minimal
length and sequence similarity. The overlap is considered as evidence that the reads partly cover the same section of the
template genome. Word (kmer) based approaches use the sequence reads as resources to extract words that occur in the
genome sequence. From the word lists graphs can be reconstructed using either the kmers as nodes (c), or more commonly as
edges (d). In the latter case, an Eulerian cycle (or path in the case of linear sequences) can be identified that reconstructs the
template sequence. Figure taken from Compeau et al. (2011).

de Bruijn graph based approaches

Functional concepts

The general procedure of a de Bruijn graph based assembly is pretty similar across various
approaches. Initially, the user has to decide on a length (or a range) for k. The software then compiles
a kmer catalogue from the read set. The number of reads a given kmer is represented in is then
called the kmer coverage (Figs. 2 and 3).

(]

Figure 2: Atypical kmer coverage histogram for a sequencing experiment of a single species. The large number of kmers
with a low coverage are introduced by sequencing errors. Genomic kmers have a higher coverage with a mean of 40 for this
plot. The subtle bump at a kmer coverage around 85 represents kmers that correspond to words that occur in repeat regions.

Figure 3: The kmer coverage histogram depends on the chosen value of k. The left plot shows the histogram resulting from a
fungal-algal metagenome for a k of 151. The genomic kmers from the alga overlap in frequency with the kmers introduced by
the sequencing error. They are hence ignored during genome assembly. It is for this reason that the assembly covers only 40%
of the metagenome. The right plot gives the kmer histogram for the same data, this time using a k of 51. The algal kmer
frequency is now clearly separated from the kmers introduced by the sequencing error, and are thus used for the genome
reconstruction. The resulting assembly, though having a lower contiguity (N50 = 22 Kb), covers now almost the entire
metagenome.

Teaching - https://applbio.biologie.uni-frankfurt.de/teaching/wiki/



Last
update:
2021/10/19
21:48

general:bioseganalysis:shotgunassembly https://applbio.biologie.uni-frankfurt.de/teaching/wiki/doku.php?id=general:bioseqanalysis:shotgunassembly

Such kmers with a low coverage - and also those with a kmer coverage below the expectation given
the read coverage - will be considered as sequencing errors. To save memory, they will either be
removed from the list, or alternatively are subjected to an inherent error correction. Subsequently,
the initial de Bruijn graph will be generated from the remaining kmers. K-1 mers will serve as nodes in
the graph, and a directed edge is drawn between two nodes once their k-2 overlap of prefix and suffix
result in an observed kmer (Fig. 4). This pre-graph is then subsequently simplified by correcting for
sequencing errors and repeats both resulting in reticulations of the graph, and subsequent nodes
connected by unambiguous paths through the graph are condensed into longer nodes. All long nodes
with lengths above a user-defined minimum contig length are finally output as contigs. Note, in
individual assemblers a scaffolding procedure is directly implemented. It is, thus, advisable to make
sure at what stage of the assembly procedure your program ends.

(]

Figure 4: A simple de Bruijn graph using a kmer size of 3. k-1 mers serve as nodes in the graph, and an edge is drawn to
connect two nodes if their k-2 terminal overlap forms a kmer that is observed in the data. It is an inherent assumption that
each kmer occurs only once in the template genome.

Method selection

Meanwhile a plethora of different WGS assemblers exist, and it is hard to decide a priori which
assembler performs best for a given genome and WGS data set. However, determining how good an
assembly is, can be very difficult and there’s even a competition - the Assemblathon - which intends
to benchmark current state-of-the-art methods in genome assembly (Earl, et al. 2011; Bradnam, et al.
2013). Still the problem exists, to what extent the insights from these benchmarks can be generalized
to any particular assembly problem. Given the complexity of the assembly problem, it is easily
conceivable that an algorithm that performs non-optimal on any of the benchmark data sets happens
to be superior for your particular assembly problem. It is, thus, that separate benchmarks are
generated for particular subsets of genomes (e.g. Abbas, et al. 2014). As an alternative, Greshake et
al. (2016) recently proposed the idea of simulated twin sets. The idea here is, to simulate a WGS read
set that closely resembles that of the actual sequencing experiment, hence its name ‘twin set’.
Assemblers can then be custom-benchmarked on the twin sets resulting in a more informed
assembler choice.

Task list

e Task list

From:
https://applbio.biologie.uni-frankfurt.de/teaching/wiki/ - Teaching

Permanent link:
https://applbio.biologie.uni-frankfurt.de/teaching/wiki/doku.php?id=general:bioseqanalysis:shotgunassembly

Last update: 2021/10/19 21:48

https://applbio.biologie.uni-frankfurt.de/teaching/wiki/ Printed on 2025/04/12 09:45


https://applbio.biologie.uni-frankfurt.de/teaching/wiki/doku.php?id=ecoevo_molevoll:topics:genome_assembly
https://applbio.biologie.uni-frankfurt.de/teaching/wiki/
https://applbio.biologie.uni-frankfurt.de/teaching/wiki/doku.php?id=general:bioseqanalysis:shotgunassembly

	Whole Genome Shotgun Assembly
	General outline
	de Bruijn graph based approaches
	Functional concepts
	Method selection

	Task list


