meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
general:datavis [2022/11/21 10:14] – [Creating custom color palettes] felixgeneral:datavis [2022/11/21 10:14] (current) – [Data Visualization] felix
Line 11: Line 11:
 <figure plottype> {{  :general:images:diverse:choosing_a_good_chart-1.png  }}<caption> **Choosing the right plot for your data.**  </caption> </figure> <figure plottype> {{  :general:images:diverse:choosing_a_good_chart-1.png  }}<caption> **Choosing the right plot for your data.**  </caption> </figure>
  
-<WRAP info> If you want to get a short primer on data visualization, check out these slides:+If you want to get a short primer on data visualization, check out these slides:
  
   * {{:general:documentation:00_data_vis_concepts.pdf|Data visualization slides by R. Burke Squires (NIH)}}   * {{:general:documentation:00_data_vis_concepts.pdf|Data visualization slides by R. Burke Squires (NIH)}}
Line 17: Line 17:
 visualisation]] visualisation]]
  
-</WRAP> 
  
 ===== Programming free Data Visualization ===== ===== Programming free Data Visualization =====
Line 49: Line 48:
  
 Packages like seaborn come with a [[https://seaborn.pydata.org/tutorial/color_palettes.html|variety of color palettes]] for all kinds of data (continues, categorical, divergent etc.). Sometimes you might want to create your own color scheme. In this case you can use the webtool [[https://coolors.co/|Coloors]] to quickly generate your own set of colorations. Packages like seaborn come with a [[https://seaborn.pydata.org/tutorial/color_palettes.html|variety of color palettes]] for all kinds of data (continues, categorical, divergent etc.). Sometimes you might want to create your own color scheme. In this case you can use the webtool [[https://coolors.co/|Coloors]] to quickly generate your own set of colorations.
 +
 +----
  
 <WRAP tabs> <WRAP tabs>