
Molekulare	Evolution	&	Bioinformatik	
Part1:	Whole	Genome	Shotgun	analyses

Source: http://www.wikinotes.ca/BIOL_215/summary/fall-2012/course-summary/

The proposed evolutionary relationships of contemporary living organisms

http://www.wikinotes.ca/BIOL_215/summary/fall-2012/course-summary/

Molekulare	Evolution	&	Bioinformatik	
Part1:	Whole	Genome	Shotgun	analyses

Source: http://www.wikinotes.ca/BIOL_215/summary/fall-2012/course-summary/

The proposed evolutionary relationships of contemporary living organisms

What about viruses?

http://www.wikinotes.ca/BIOL_215/summary/fall-2012/course-summary/

We encounter DNA in three forms

We encounter DNA in three forms

Archaea: http://teachoceanscience.net/teaching_resources/
education_modules/marine_bacteria/learn_about/
Virus: jonlieffmd.com
Bacterium: http://dtc.pima.edu
Arabidopsis: http://de.wikipedia.org/wiki/Acker-Schmalwand
Frog: http://de.wikipedia.org/wiki/Froschlurche

in vivo

http://teachoceanscience.net/teaching_resources/
http://dtc.pima.edu
http://de.wikipedia.org/wiki/Acker-Schmalwand
http://de.wikipedia.org/wiki/Froschlurche

We encounter DNA in three forms

Archaea: http://teachoceanscience.net/teaching_resources/
education_modules/marine_bacteria/learn_about/
Virus: jonlieffmd.com
Bacterium: http://dtc.pima.edu
Arabidopsis: http://de.wikipedia.org/wiki/Acker-Schmalwand
Frog: http://de.wikipedia.org/wiki/Froschlurche

in vivoin vitro

http://teachoceanscience.net/teaching_resources/
http://dtc.pima.edu
http://de.wikipedia.org/wiki/Acker-Schmalwand
http://de.wikipedia.org/wiki/Froschlurche

We encounter DNA in three forms

Archaea: http://teachoceanscience.net/teaching_resources/
education_modules/marine_bacteria/learn_about/
Virus: jonlieffmd.com
Bacterium: http://dtc.pima.edu
Arabidopsis: http://de.wikipedia.org/wiki/Acker-Schmalwand
Frog: http://de.wikipedia.org/wiki/Froschlurche

in vivoin vitro

in silico

http://teachoceanscience.net/teaching_resources/
http://dtc.pima.edu
http://de.wikipedia.org/wiki/Acker-Schmalwand
http://de.wikipedia.org/wiki/Froschlurche

Genome Sequencing

Archaea: http://teachoceanscience.net/teaching_resources/
education_modules/marine_bacteria/learn_about/
Virus: jonlieffmd.com
Bacterium: http://dtc.pima.edu
Arabidopsis: http://de.wikipedia.org/wiki/Acker-Schmalwand
Frog: http://de.wikipedia.org/wiki/Froschlurche

in vivoin vitro

in silico

http://teachoceanscience.net/teaching_resources/
http://dtc.pima.edu
http://de.wikipedia.org/wiki/Acker-Schmalwand
http://de.wikipedia.org/wiki/Froschlurche

Human	Chr	8:	146,000,000	bp

Method Approach Real-time Read-length Bp per run # of runs for 10x
coverage

Sanger
(ABI 3730xl)

Sequencing by
synthesis

No 700 - 1000 bp 0.77 Mb 2,000

454/Roche2 Sequencing by
synthesis

Yes 700 - 1000 bp 700 Mb 2

Illumina MiSeq3 Sequencing by
synthesis

Yes 300 bp 15 Gb ~0.1

Illumina HiSeq3 Sequencing by
synthesis

Yes 150 bp 1000 Gb ~0.02

1	http://www6.appliedbiosystems.com/products/abi3730xlspecs.cfm	
2	http://454.com/products/gs-flx-system/	
3	http://www.illumina.com/systems/sequencing.ilmn

Literature:	Comparison	of	Next-Generation	Sequencing	Systems	
http://www.hindawi.com/journals/bmri/2012/251364/

How big a problem is the data generation for the
sequencing of entire genomes?  

http://454.com/products/gs-flx-system/
http://454.com/products/gs-flx-system/

Human	Chr	8:	146,000,000	bp

Method Approach Real-time Read-length Bp per run # of runs for 10x
coverage

Illumina Sequencing by
synthesis

Yes 125 bp 1000 Mb ~0.02

150,000,000	Km

Oberursel	->	Siegen:	123	km

How big a problem is the data generation for sequencing
of entire genomes?  

Human	Chr	8:	146,000,000	bp

Method Approach Real-time Read-length Bp per run # of runs for 10x
coverage

Illumina Sequencing by
synthesis

Yes 125 bp 1000 Mb ~0.02

150,000,000	Km

In	fact,	the	problem	is	at	least	2	orders	of	magnitude	larger	since:	
	 *	The	entire	human	genome	consists	of	approx.	3.2	Billion	base	pairs	
	 *	1-fold	coverage	is	not	sufficient.	Typically	at	least	10	x	coverage*	
	 should	be	achieved.	Thus,	we	need	to	sequence	32	Billion	base		pairs.

*ca	80x	required	for	short	read	sequencer

How big a problem is the data generation for sequencing
of entire genomes?  

7

For	the	better	part	of	my	presentations	we	will	look	at	DNA	either	as	lines	or	
as	text	strings…	

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing

Template	DNA

8

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing

Template	DNA

1. Randomly	break	template	DNA	into	pieces

9

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing

Template	DNA

1. Randomly	break	template	DNA	into	pieces

10

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	and	size	select

Sanger	Sequencing	in	a	Nutshell	
(Sequencing	by	synthesis)

3’-…GACTAGATACGAGCGTGA…-5’
5’-…CTGAT

(template)
(primer)

…CTGATCTAT

…CTGATCTATGCTC

Step1: Template amplification
single	template	molecule

Millions	of	identical	template	molecules

Polymerase		
Chain		
Reaction	
~35	cycles

Step2: Cycle sequencing

The Template:
5’-…CTGATCTATGCTCGCACT…-3’
3’-…GACTAGATACGAGCGTGA…-5’

DNA-Polymerase	
Primer	for	starting	the	synthesis	
Desoxinucleotides:	
	 dATP,	dCTP,	dTTP,	dGTP	
Di-Desoxinucleotides	(Dye-Terminators)	
	 ddATP						,	ddCTP	
	 ddTTP						,	ddGTP

Repeat	cycle	of	primer	
annealing,		

polymerization	and	
strand	separation	n	

times

Sanger	Sequencing	in	a	Nutshell	
(Sequencing	by	synthesis)

3’-…GACTAGATACGAGCGTGA…-5’
5’-…CTGAT

(template)
(primer)

…CTGATCT
…CTGATCTA
…CTGATCTAT
…CTGATCTATG
…CTGATCTATGC
…CTGATCTATGCT
…CTGATCTATGCTC
…CTGATCTATGCTCG

Step1: Template amplification
single	template	molecule

Millions	of	identical	template	molecules

Polymerase		
Chain		
Reaction	
~35	cycles

Step2: Cycle sequencing

The Template:
5’-…CTGATCTATGCTCGCACT…-3’
3’-…GACTAGATACGAGCGTGA…-5’

DNA-Polymerase	
Primer	for	starting	the	synthesis	
Desoxinucleotides:	
	 dATP,	dCTP,	dTTP,	dGTP	
Di-Desoxinucleotides	(Dye-Terminators)	
	 ddATP						,	ddCTP	
	 ddTTP						,	ddGTP

…CTGATC
Repeat	cycle	of	primer	

annealing,		
polymerization	and	
strand	separation	n	

times

Sanger	Sequencing	in	a	Nutshell	
(Sequencing	by	synthesis)

3’-…GACTAGATACGAGCGTGA…-5’
5’-…CTGAT

(template)
(primer)

…CTGATCT
…CTGATCTA
…CTGATCTAT
…CTGATCTATG
…CTGATCTATGC
…CTGATCTATGCT
…CTGATCTATGCTC
…CTGATCTATGCTCG

Step1: Template amplification
single	template	molecule

Millions	of	identical	template	molecules

Polymerase		
Chain		
Reaction	
~35	cycles

Step2: Cycle sequencing

The Template:
5’-…CTGATCTATGCTCGCACT…-3’
3’-…GACTAGATACGAGCGTGA…-5’

DNA-Polymerase	
Primer	for	starting	the	synthesis	
Desoxinucleotides:	
	 dATP,	dCTP,	dTTP,	dGTP	
Di-Desoxinucleotides	(Dye-Terminators)	
	 ddATP						,	ddCTP	
	 ddTTP						,	ddGTP

…CTGATC
Repeat	cycle	of	primer	

annealing,		
polymerization	and	
strand	separation	n	

times

Step	3:	Size	separation	via	electrophoresis	
and	detection	of	fluorescence	markers

Sanger	Sequencing	in	a	Nutshell	
(Sequencing	by	synthesis)

3’-…GACTAGATACGAGCGTGA…-5’
5’-…CTGAT

(template)
(primer)

…CTGATCT
…CTGATCTA
…CTGATCTAT
…CTGATCTATG
…CTGATCTATGC
…CTGATCTATGCT
…CTGATCTATGCTC
…CTGATCTATGCTCG

Step1: Template amplification
single	template	molecule

Millions	of	identical	template	molecules

Polymerase		
Chain		
Reaction	
~35	cycles

Step2: Cycle sequencing

The Template:
5’-…CTGATCTATGCTCGCACT…-3’
3’-…GACTAGATACGAGCGTGA…-5’

DNA-Polymerase	
Primer	for	starting	the	synthesis	
Desoxinucleotides:	
	 dATP,	dCTP,	dTTP,	dGTP	
Di-Desoxinucleotides	(Dye-Terminators)	
	 ddATP						,	ddCTP	
	 ddTTP						,	ddGTP

…CTGATC
Repeat	cycle	of	primer	

annealing,		
polymerization	and	
strand	separation	n	

times

7-8-9-10-11-12-13-14-6- -

+

Electric	field

Step	3:	Size	separation	via	electrophoresis	
and	detection	of	fluorescence	markers

Sanger	Sequencing	in	a	Nutshell	
(Sequencing	by	synthesis)

3’-…GACTAGATACGAGCGTGA…-5’
5’-…CTGAT

(template)
(primer)

…CTGATCT
…CTGATCTA
…CTGATCTAT
…CTGATCTATG
…CTGATCTATGC
…CTGATCTATGCT
…CTGATCTATGCTC
…CTGATCTATGCTCG

Step1: Template amplification
single	template	molecule

Millions	of	identical	template	molecules

Polymerase		
Chain		
Reaction	
~35	cycles

Step2: Cycle sequencing

The Template:
5’-…CTGATCTATGCTCGCACT…-3’
3’-…GACTAGATACGAGCGTGA…-5’

DNA-Polymerase	
Primer	for	starting	the	synthesis	
Desoxinucleotides:	
	 dATP,	dCTP,	dTTP,	dGTP	
Di-Desoxinucleotides	(Dye-Terminators)	
	 ddATP						,	ddCTP	
	 ddTTP						,	ddGTP

…CTGATC
Repeat	cycle	of	primer	

annealing,		
polymerization	and	
strand	separation	n	

times

7-
8-
9-
10-
11-
12-
13-
14-

6-

-

+

Electric	field

Step	3:	Size	separation	via	electrophoresis	
and	detection	of	fluorescence	markers

Detector

Sanger	Sequencing	in	a	Nutshell	
(Sequencing	by	synthesis)

3’-…GACTAGATACGAGCGTGA…-5’
5’-…CTGAT

(template)
(primer)

…CTGATCT
…CTGATCTA
…CTGATCTAT
…CTGATCTATG
…CTGATCTATGC
…CTGATCTATGCT
…CTGATCTATGCTC
…CTGATCTATGCTCG

Step1: Template amplification
single	template	molecule

Millions	of	identical	template	molecules

Polymerase		
Chain		
Reaction	
~35	cycles

Step2: Cycle sequencing

The Template:
5’-…CTGATCTATGCTCGCACT…-3’
3’-…GACTAGATACGAGCGTGA…-5’

DNA-Polymerase	
Primer	for	starting	the	synthesis	
Desoxinucleotides:	
	 dATP,	dCTP,	dTTP,	dGTP	
Di-Desoxinucleotides	(Dye-Terminators)	
	 ddATP						,	ddCTP	
	 ddTTP						,	ddGTP

…CTGATC
Repeat	cycle	of	primer	

annealing,		
polymerization	and	
strand	separation	n	

times

7-
8-
9-
10-
11-
12-
13-
14-

6-

-

+

Electric	field

Step	3:	Size	separation	via	electrophoresis	
and	detection	of	fluorescence	markers

Detector

Sanger	Sequencing	in	a	Nutshell	
(Sequencing	by	synthesis)

3’-…GACTAGATACGAGCGTGA…-5’
5’-…CTGAT

(template)
(primer)

…CTGATCT
…CTGATCTA
…CTGATCTAT
…CTGATCTATG
…CTGATCTATGC
…CTGATCTATGCT
…CTGATCTATGCTC
…CTGATCTATGCTCG

Step1: Template amplification
single	template	molecule

Millions	of	identical	template	molecules

Polymerase		
Chain		
Reaction	
~35	cycles

Step2: Cycle sequencing

The Template:
5’-…CTGATCTATGCTCGCACT…-3’
3’-…GACTAGATACGAGCGTGA…-5’

DNA-Polymerase	
Primer	for	starting	the	synthesis	
Desoxinucleotides:	
	 dATP,	dCTP,	dTTP,	dGTP	
Di-Desoxinucleotides	(Dye-Terminators)	
	 ddATP						,	ddCTP	
	 ddTTP						,	ddGTP

…CTGATC
Repeat	cycle	of	primer	

annealing,		
polymerization	and	
strand	separation	n	

times

7-
8-
9-
10-
11-
12-
13-
14-

6-

-

+

Electric	field

Step	3:	Size	separation	via	electrophoresis	
and	detection	of	fluorescence	markers

Base	calling

C T A T G C T C G

Detector

Sanger	Sequencing	in	a	Nutshell	
(Sequencing	by	synthesis)

3’-…GACTAGATACGAGCGTGA…-5’
5’-…CTGAT

(template)
(primer)

…CTGATCT
…CTGATCTA
…CTGATCTAT
…CTGATCTATG
…CTGATCTATGC
…CTGATCTATGCT
…CTGATCTATGCTC
…CTGATCTATGCTCG

Step1: Template amplification
single	template	molecule

Millions	of	identical	template	molecules

Polymerase		
Chain		
Reaction	
~35	cycles

Step2: Cycle sequencing

The Template:
5’-…CTGATCTATGCTCGCACT…-3’
3’-…GACTAGATACGAGCGTGA…-5’

DNA-Polymerase	
Primer	for	starting	the	synthesis	
Desoxinucleotides:	
	 dATP,	dCTP,	dTTP,	dGTP	
Di-Desoxinucleotides	(Dye-Terminators)	
	 ddATP						,	ddCTP	
	 ddTTP						,	ddGTP

…CTGATC
Repeat	cycle	of	primer	

annealing,		
polymerization	and	
strand	separation	n	

times

7-
8-
9-
10-
11-
12-
13-
14-

6-

-

+

Electric	field

Step	3:	Size	separation	via	electrophoresis	
and	detection	of	fluorescence	markers

Example	for	a	chromatogram Base	calling

C T A T G C T C G

12

 1st cycle
 denaturation

n=35
total

Cluster Generation: Amplification

1st cycle
 annealing

2nd cycle
 extension

2nd cycle
 annealing

1st cycle
 extension

2nd cycle
 denaturation

13

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing

Template	DNA

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments	

14

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments	

15

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing 
Sometimes	adapter	sequences	remain!

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments	

16

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing 
Sometimes	adapter	sequences	remain!

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments	

Identifying	these	sequences	is	simple	when	we	ignore	the	complexity	of	the	search

The	problem	is,	what	sequence(s)	are	we	looking	for?

Illumina	sequence	library	generation		
Part	1.	Template	preparation

18

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing 
Sometimes	adapter	sequences	remain!

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments	

Identifying	these	sequences	is	simple	when	we	ignore	the	complexity	of	the	search

The	problem	is,	what	sequence(s)	are	we	looking	for?

5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTC

PCR Primer Index 1

5’ CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTC

PCR Primer Index 2

5’ GTGACGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing Read 2 Sequencing Primer

5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing Index Read Sequencing Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing Read 1 Sequencing Primer

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing PCR Primer 2.0

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing PCR Primer 1.0

5’ P-GATCGGAAGAGCACACGTCT

Multiplexing Adapters

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Illumina	sequence	library	generation	
Part	2.	Adapter	ligation

5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTC

PCR Primer Index 1

5’ CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTC

PCR Primer Index 2

5’ GTGACGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing Read 2 Sequencing Primer

5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing Index Read Sequencing Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing Read 1 Sequencing Primer

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing PCR Primer 2.0

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing PCR Primer 1.0

5’ P-GATCGGAAGAGCACACGTCT

Multiplexing Adapters

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Illumina	sequence	library	generation	
Part	2.	Adapter	ligation

This	is	typically	the	information	that	you	get	to	plan	your	post-processing	of	sequence	reads…	

Illumina	sequence	library	generation:	Taking	a	closer	look

-A

P

P

A-

5’

3’

P5

P7

Rd1	SP -T

P
+2x Rd2	SPBS

5’ P-GATCGGAAGAGCACACGTCT

AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplex	Adapter	P5

Multiplexing	PCR	Primer	1.0

Multiplex	Adapter	P7

Multiplex	PCR	Primer	2.0	(Reverse	complement*)

PCR	Primer	Index	1	(RC*)

*Relative	to	Illumina	documentation

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	1.	Ligation	of	the	Multiplexing	Adapters

-A

P

P

A-

P-GATCGGAAGAGCACACGTCT

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

5’ACACTCTTTCCCTACACGACGCTCTTCCGATCT
5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	1.	Ligation	of	the	Multiplexing	Adapters

-A

P

P

A-

P-GATCGGAAGAGCACACGTCT

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

5’ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	1.	Ligation	of	the	Multiplexing	Adapters

-A

P

P

A-

P-GATCGGAAGAGCACACGTCT

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

5’ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	1.	Ligation	of	the	Multiplexing	Adapters

A-
-AGATCGGAAGAGCACACGTCT-3’

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

GATCGGAAGAGCACACGTCT

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	1.	Ligation	of	the	Multiplexing	Adapters

A-
-AGATCGGAAGAGCACACGTCT-3’

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

GATCGGAAGAGCACACGTCT

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	1.	Ligation	of	the	Multiplexing	Adapters

A-
-AGATCGGAAGAGCACACGTCT-3’

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

GATCGGAAGAGCACACGTCT

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT-

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	1.	Ligation	of	the	Multiplexing	Adapters

A-
-AGATCGGAAGAGCACACGTCT-3’

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

GATCGGAAGAGCACACGTCT 5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT-

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	2.	PCR	starting	from	Multiplex	PCR	Primer	2.0

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

-AGATCGGAAGAGCACACGTCT-3’5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	2.	PCR	starting	from	Multiplex	PCR	Primer	2.0

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

-AGATCGGAAGAGCACACGTCT-3’5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	2.	PCR	starting	from	Multiplex	PCR	Primer	2.0

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

-AGATCGGAAGAGCACACGTCT-3’5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT-3’

5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	2b:	PCR	starting	from	Multiplexing	PCR	Primer	1.0

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

-AGATCGGAAGAGCACACGTCT-3’5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-

-AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT-3’

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

AATGATACGGCGACCACCGAGATCT

5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	2b:	PCR	starting	from	Multiplexing	PCR	Primer	1.0

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

-AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT-3’

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

AATGATACGGCGACCACCGAGATCT

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3’

5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	2b:	PCR	starting	from	Multiplexing	PCR	Primer	1.0

GAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

-AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT-3’

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

AATGATACGGCGACCACCGAGATCT

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	3.	PCR	starting	from	PCR	Primer	Index	1

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

AATGATACGGCGACCACCGAGATCT

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3’

5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT--AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT-3’

5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTC

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	3.	PCR	starting	from	PCR	Primer	Index	1

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

AATGATACGGCGACCACCGAGATCT

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3’

5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTC

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	3.	PCR	starting	from	PCR	Primer	Index	1

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

AATGATACGGCGACCACCGAGATCT

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3’

C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T CGTGATGTGACTGGAGTTC

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	3.	PCR	starting	from	PCR	Primer	Index	1

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

AATGATACGGCGACCACCGAGATCT

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3’

C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T CGTGATGTGACTGGAGTTCTGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

TTACTATGCCGCTGGTGGCTCTAGA

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	4.	Completion	of	the	construct

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’-AATGATACGGCGACCACCGAGATCT

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3’

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’-AATGATACGGCGACCACCGAGATCT

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTC

PCR	Primer	Index	1Multiplexing	PCR	Primer	1.0

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	4.	Completion	of	the	construct

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’-AATGATACGGCGACCACCGAGATCT

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTC

PCR	Primer	Index	1Multiplexing	PCR	Primer	1.0

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACG

A
T
C
T
C
G
T
A
T
G
C
C
G
T
C
T
T
C
T
G
C
T
T
G

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	4.	Completion	of	the	construct

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’-AATGATACGGCGACCACCGAGATCT

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTC

PCR	Primer	Index	1Multiplexing	PCR	Primer	1.0

Illumina	sequence	library	generation:	Taking	a	closer	look	
Step	5.	Amplify	the	construct	with	the	two	PCR	primers

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’-AATGATACGGCGACCACCGAGATCT

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’-AATGATACGGCGACCACCGAGATCT

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTC

PCR	Primer	Index	1Multiplexing	PCR	Primer	1.0

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACG

A
T
C
T
C
G
T
A
T
G
C
C
G
T
C
T
T
C
T
G
C
T
T
G

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACG

A
T
C
T
C
G
T
A
T
G
C
C
G
T
C
T
T
C
T
G
C
T
T
G
-
’
3

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’-AATGATACGGCGACCACCGAGATCT

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Read	1

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Read	1

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Read	1

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Read	1

Sequencing

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Read	1

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACG
Sequencing

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Read	1

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACG

CLIP	P7	Multiplexing	adapter		
at	3’	end	of	the	read	(together	with	everything	
that	follows)	and	don’t	forget	the	preceding	A!

Sequencing

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’-AATGATACGGCGACCACCGAGATCT

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACG

A
T
C
T
C
G
T
A
T
G
C
C
G
T
C
T
T
C
T
G
C
T
T
G
-
’
3

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Index	Read

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Index	Read

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer

5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Index	Read

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer

5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Index	Read

Sequencing

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer

5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Index	Read

Sequencing

Only	six	cycles!	No	clipping	necessary

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

5
’
-
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T

CGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

3’-TTACTATGCCGCTGGTGGCTCTAGA

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’-AATGATACGGCGACCACCGAGATCT

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACG

A
T
C
T
C
G
T
A
T
G
C
C
G
T
C
T
T
C
T
G
C
T
T
G
-
’
3

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Read	2

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’-AATGATACGGCGACCACCGAGATCT

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACG

A
T
C
T
C
G
T
A
T
G
C
C
G
T
C
T
T
C
T
G
C
T
T
G
-
’
3

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Read	2

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’-AATGATACGGCGACCACCGAGATCT

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACG

A
T
C
T
C
G
T
A
T
G
C
C
G
T
C
T
T
C
T
G
C
T
T
G
-
’
3

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Read	2

Sequencing

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’-AATGATACGGCGACCACCGAGATCT

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACG

A
T
C
T
C
G
T
A
T
G
C
C
G
T
C
T
T
C
T
G
C
T
T
G
-
’
3

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Read	2

Sequencing

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

Illumina	sequence	library	sequencing:	Taking	a	closer	look	
Three	sequencing	primers	are	used	to	generate	paired	end	reads	and	the	index

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5’-AATGATACGGCGACCACCGAGATCT

-AGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACG

A
T
C
T
C
G
T
A
T
G
C
C
G
T
C
T
T
C
T
G
C
T
T
G
-
’
3

5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Multiplexing	Read	2	Sequencing	Primer
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Multiplexing	Index	Read	Sequencing	Primer

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Multiplexing	Read	1	Sequencing	Primer

Generation	of	Read	2

Sequencing

TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA

CLIP	reverse	complement	of	P5	Multiplexing	adapter		
at	3’	end	of	read	2	(together	with	everything	that	follows)!

There	are	many	different	kinds	of	libraries*	

*Make	sure	you	know	what	kind	of	library	you	are	dealing	with!

The	insert	size	is	not	the	same	as	the	library	fragment	size*	

*Make	sure	you	know	what	the	people	in	the	lab	have	selected	for!

3325

Library Preparation

DNA  
(0.1-5.0 µg)

1 2 3 7 8 94 5 6
T G T A C G A T …

Illumina	Sequencing	Technology	Overview

C

C

C

C

A

A

A

T

T

G

G

G

G

Sequencing

Single molecule array

Cluster Growth

Image Acquisition Base Calling

5’

5’3’

T
G
T
A
C
G
A
T
C
A
C
C
C
G
A
T
C
G
A
A

Worldwide	distribution	of	Illumina	HighSeq	machines

http://pathogenomics.bham.ac.uk/hts/

35

Template	hybridization	and	extension

single molecules
hybridize to the lawn of
primers

35

Template	hybridization	and	extension

single molecules
hybridize to the lawn of
primers

36

Template	hybridization	and	extension

36

Template	hybridization	and	extension

adapter
sequence

adapter
sequence

36

Template	hybridization	and	extension

adapter
sequence

adapter
sequence

3' extension

Bound molecules are
then extended by
polymerases

37

Template	hybridization	and	extension

primers are then
extended by
polymerases

37

Template	hybridization	and	extension

primers are then
extended by
polymerases

38

Removal	of	original	strand

newly synthesized
strand is covalently
attached to the flow
cell surface

Double stranded
molecule is denatured

Original template is
washed away

38

Removal	of	original	strand

newly synthesized
strand is covalently
attached to the flow
cell surface

single
molecules
bound to  
flow cell in  
a random
pattern

Double stranded
molecule is denatured

Original template is
washed away

39

Bridging	over

39

Bridging	over

Single-strand flips over
to hybridize to adjacent
oligos to form a bridge

• Hybridized primer is
extended by
polymerases

40

Denaturation

Double-stranded
bridge is denatured

Result: two copies of
covalently bound
single-stranded
templates

41

Bridging	over	of	templates

41

Bridging	over	of	templates

Single-strands flip over
to hybridize to adjacent
oligos to form bridges

• Hybridized primer is
extended by
polymerase

4234

Amplification

Bridge amplification
cycle repeated until
multiple bridges are
formed across the
entire flow cell

43

Linearization

43

Linearization

dsDNA bridges
are denatured

• complement
strands are
cleaved at P5
adapter and
washed away

44

Linearization

dsDNA bridges
are denatured

• complement
strands are
cleaved at P5
adapter and
washed away

45

Blocking

Free 3’ ends
are blocked to
prevent
unwanted
DNA priming

45

Blocking

Free 3’ ends
are blocked to
prevent
unwanted
DNA priming

46

Hybridization	of	sequencing	primer	1

Sequencing
primer is
hybridized to
adapter
sequence

46

Hybridization	of	sequencing	primer	1

Sequencing
primer is
hybridized to
adapter
sequence

sequencing
primer 1

47

Sequencing	By	Synthesis	(SBS)

47

3’

5’

Sequencing	By	Synthesis	(SBS)

47

5’3’

5’

Cycle 1: Add sequencing reagents (All 4 labeled
nucleotides in 1 reaction)

Sequencing	By	Synthesis	(SBS)

G

T

C

A

G

T

C

A

G

T

C

A

47

5’

T

3’

5’

 First base incorporated (reversible dye terminator)

Cycle 1: Add sequencing reagents (All 4 labeled
nucleotides in 1 reaction)

Sequencing	By	Synthesis	(SBS)

G

T

C

A

G

T

C

A

G

T

C

A

47

5’

T

3’

5’

 First base incorporated (reversible dye terminator)

Cycle 1: Add sequencing reagents (All 4 labeled
nucleotides in 1 reaction)

 Remove unincorporated bases

Sequencing	By	Synthesis	(SBS)

47

5’

T

3’

5’

 First base incorporated (reversible dye terminator)

Cycle 1: Add sequencing reagents (All 4 labeled
nucleotides in 1 reaction)

 Remove unincorporated bases

 Detect signal

Sequencing	By	Synthesis	(SBS)

47

5’

T

3’

5’

 First base incorporated (reversible dye terminator)

Cycle 1: Add sequencing reagents (All 4 labeled
nucleotides in 1 reaction)

 Remove unincorporated bases

 Detect signal

Sequencing	By	Synthesis	(SBS)

 Unprotect/remove dye

T

47

5’

G
T

3’

5’

 First base incorporated (reversible dye terminator)

Cycle 1: Add sequencing reagents (All 4 labeled
nucleotides in 1 reaction)

 Remove unincorporated bases

 Detect signal

Cycle 2-n: Add sequencing reagents and repeat

Sequencing	By	Synthesis	(SBS)

 Unprotect/remove dye

T

47

5’

G
T

3’

5’

C

A

G

T
C

A

T

C

A

C

C

T
A
G

C
G

T
A

 First base incorporated (reversible dye terminator)

Cycle 1: Add sequencing reagents (All 4 labeled
nucleotides in 1 reaction)

 Remove unincorporated bases

 Detect signal

Cycle 2-n: Add sequencing reagents and repeat

Sequencing	By	Synthesis	(SBS)

 Unprotect/remove dye

T

47

5’

G
T

3’

5’

C

A

G

T
C

A

T

C

A

C

C

T
A
G

C
G

T
A

 First base incorporated (reversible dye terminator)

Cycle 1: Add sequencing reagents (All 4 labeled
nucleotides in 1 reaction)

 Remove unincorporated bases

 Detect signal

Cycle 2-n: Add sequencing reagents and repeat

Key points
All four labelled nucleotides in one
reaction
Reversible dye terminator
Base-by-base sequencing
Real-time sequencing

Sequencing	By	Synthesis	(SBS)

 Unprotect/remove dye

T

48

Sequencing

chemistry:	
– All	4	labeled	nucleotides	
in	1	reaction		

– Reversible	dye	
terminators	

3-step	cycles:		
– Incorporate	fluorescent	
nucleotide	

– Image	tiles	
– Cleave	terminator	and	
fluor

Add 4 Fl-
NTP’s +
Polymerase

Incorporated
Fl-NTP is
imaged

Terminator and
fluorescent dye
are cleaved from
the Fl-NTP

X 36 - 101

Sequencing

49

Paired-end	sequencing.	 
Sequencing	the	index	(six	cycles)

49

Paired-end	sequencing.	 
Sequencing	the	index	(six	cycles)

49

Paired-end	sequencing.	 
Sequencing	the	index	(six	cycles)

Align Index
sequencing
primer

49

Paired-end	sequencing.	 
Sequencing	the	index	(six	cycles)

Align Index
sequencing
primer

49

Paired-end	sequencing.	 
Sequencing	the	index	(six	cycles)

Align Index
sequencing
primer

49

Paired-end	sequencing.	 
Sequencing	the	index	(six	cycles)

Align Index
sequencing
primer

49

Paired-end	sequencing.	 
Sequencing	the	index	(six	cycles)

Align Index
sequencing
primer

49

Paired-end	sequencing.	 
Sequencing	the	index	(six	cycles)

Align Index
sequencing
primer

49

Paired-end	sequencing.	 
Sequencing	the	index	(six	cycles)

Align Index
sequencing
primer

50

Paired-end	sequencing.	 
Sequencing	the	index

50

Paired-end	sequencing.	 
Sequencing	the	index

remove
sequencing
products

50

Paired-end	sequencing.	 
Sequencing	the	index

remove
sequencing
products

unblock
3’ ends

51

Paired-end	sequencing,	re-synthesis	of	2nd	strand

Bridge formation and 3'
extension

*Note,	that	this	phrase	is	typically	used	in	the	context	of	cDNA	synthesis!

52

Denaturation

Double-stranded
bridge is denatured

Result: two copies of
covalently bound
single-stranded
templates

53

Cleavage	and	removal	of	first	strand

Clip at P7 adapter

Remove unbound
template.

53

Cleavage	and	removal	of	first	strand

Clip at P7 adapter

Remove unbound
template.

53

Cleavage	and	removal	of	first	strand

Clip at P7 adapter

Remove unbound
template.

54

Hybridization	of	sequencing	primer	2

Sequencing
primer 2 is
hybridized to
adapter
sequence

Sequence of
the 2nd end is
determined

54

Hybridization	of	sequencing	primer	2

Sequencing
primer 2 is
hybridized to
adapter
sequence

Sequence of
the 2nd end is
determined

sequencing
primer 2

54

Hybridization	of	sequencing	primer	2

Sequencing
primer 2 is
hybridized to
adapter
sequence

Sequence of
the 2nd end is
determined

sequencing
primer 2

55

 1st cycle
 denaturation

n=35
total

Cluster Generation: Amplification

1st cycle
 annealing

2nd cycle
 extension

2nd cycle
 annealing

1st cycle
 extension

2nd cycle
 denaturation

The	methods	described	so	far	average	the	signal	over	millions	
of	copies	of	the	same	sequence.	Why	is	this	problematic?

The	methods	described	so	far	average	the	signal	over	millions	
of	copies	of	the	same	sequence.	Why	is	this	problematic?

• Errors	during	PCR	amplification	render	copies	not	100%	identical.	Especially	errors	at	
an	early	stage	of	the	PCR	can	mimic	heterozygous	positions.

The	methods	described	so	far	average	the	signal	over	millions	
of	copies	of	the	same	sequence.	Why	is	this	problematic?

• Errors	during	PCR	amplification	render	copies	not	100%	identical.	Especially	errors	at	
an	early	stage	of	the	PCR	can	mimic	heterozygous	positions.

• Not	every	copy	of	a	pool	of	millions	of	sequences	will	incorporate	a	base	in	each	cycle.	
With	increasing	numbers	of	cycles	the	length	heterogeneity	of	the	already	sequenced	
fraction	will	increase	and	the	sequencing	will	get	out	of	phase.

The	methods	described	so	far	average	the	signal	over	millions	
of	copies	of	the	same	sequence.	Why	is	this	problematic?

• Errors	during	PCR	amplification	render	copies	not	100%	identical.	Especially	errors	at	
an	early	stage	of	the	PCR	can	mimic	heterozygous	positions.

• Not	every	copy	of	a	pool	of	millions	of	sequences	will	incorporate	a	base	in	each	cycle.	
With	increasing	numbers	of	cycles	the	length	heterogeneity	of	the	already	sequenced	
fraction	will	increase	and	the	sequencing	will	get	out	of	phase.

Template: AGACTATTTA
 TCT

The	methods	described	so	far	average	the	signal	over	millions	
of	copies	of	the	same	sequence.	Why	is	this	problematic?

• Errors	during	PCR	amplification	render	copies	not	100%	identical.	Especially	errors	at	
an	early	stage	of	the	PCR	can	mimic	heterozygous	positions.

• Not	every	copy	of	a	pool	of	millions	of	sequences	will	incorporate	a	base	in	each	cycle.	
With	increasing	numbers	of	cycles	the	length	heterogeneity	of	the	already	sequenced	
fraction	will	increase	and	the	sequencing	will	get	out	of	phase.

Template: AGACTATTTA
 TCT

Template: AGACTATTTA
 (9x) TCTGAT
Template: AGACTATTTA
 (1x) TCTGA

The	methods	described	so	far	average	the	signal	over	millions	
of	copies	of	the	same	sequence.	Why	is	this	problematic?

• Errors	during	PCR	amplification	render	copies	not	100%	identical.	Especially	errors	at	
an	early	stage	of	the	PCR	can	mimic	heterozygous	positions.

• Not	every	copy	of	a	pool	of	millions	of	sequences	will	incorporate	a	base	in	each	cycle.	
With	increasing	numbers	of	cycles	the	length	heterogeneity	of	the	already	sequenced	
fraction	will	increase	and	the	sequencing	will	get	out	of	phase.

Template: AGACTATTTA
 TCT

Template: AGACTATTTA
 (9x) TCTGAT
Template: AGACTATTTA
 (1x) TCTGA

Template: AGACTATTTA
 (5x) TCTGATAAAT
Template: AGACTATTTA
 (5x) TCTGATAAA

Base	quality	values	Q		
(Sanger	Sequence	reads	as	example)

Quality	Parameters	
•Peak	Spacing	(7)	
•Uncalled/Called	Ratio	(7)	
•Uncalled/Called	Ratio	(3)	
•Peak	Resolution

Ewing	B,	Green	P:	Basecalling	of	automated	sequencer	traces	using	phred.	II.	Error	probabilities.	Genome	Research	8:186-194	(1998).

	Q	=	-10	log10(Pe)*

*Pe:	empirical	error	probability

Dealing with sequences means dealing with
sequence formats

Dealing with sequences means dealing with
sequence formatsSequence ID

Dealing with sequences means dealing with
sequence formats

Sequence}
Sequence ID

Dealing with sequences means dealing with
sequence formats

Sequence}
Sequence ID

Separator

Dealing with sequences means dealing with
sequence formats

Sequence}
}Sequence Quality String

Sequence ID

Separator

Dealing with sequences means dealing with
sequence formats

Sequence}
}Sequence Quality String

Sequence ID

Separator

>Clagr-170543-2741/1
CAGAGAATAAATTCAATCTTCGCCAGCTACAAGTAGCTTTGAAATGGACTGGAATG
GAGAAAGGGGATCATCTCAAACTTCTGGAAGAAGGCCGACAGCTGGTCTACAAAGG
CCCTCTGAAGAAGAGTCCGACAGACTCTAGTGAAGTGCACGTTTACTTATTTAACC
ACGCTTTGTTTTTTGTAAAACAAAAGACGAGTAACAGGCAGGAGGAACTACGGGTA
TACAAGAAGCCGATACCACTGGAGCT
>Clagr-170541-2741/1
TATTTTAAGAATAAGATAATAAAATATATTTAAAGAATAGTGAATCTATTAAAAAA
TTATTATAGAATAAAAATTTCATTTCTATATCTTAATAATAAGTACTTACTTAGTA
TTATCTTTATTAATTTATATAATAAGGAAGATATTATAGTTAAAAGAATATGTCAT
AGTGAAGGCATAAGCGATGAAGCTAATATGGCTATGAAGCTCTAAAACAGCTATGT
GATAACATAAAGCGATGTTCTAATGG

@Clagr-170543-2741/1
CAGAGAATAAATTCAATCTTCGCCAGCTACAAGTAGCTTTGAAATGGAC
TGGAATGGAGAAAGGGGATCATCTCAAACTTCTGGAAGAAGGCCGACAG
CTGGTCTACAAAGGCCCTCTGAAGAAGAGTCCGACAGACTCTAGTGAAG
TGCACGTTTACTTATTTAACCACGCTTTGTTTTTTGTAAAACAAAAGAC
GAGTAACAGGCAGGAGGAACTACGGGTATACAAGAAGCCGATACCACTG
GAGCT
+
?A????B?DDA<DBDDGAGC/GIHAHIH/
IEFIIIHIHHHFIHIIIII>HI?HHHHDF/
DFEGEIFHHIE7IIHIIHIHHHFHIIEHIHHBHHHHHHGIHHIHFHG;I
EGGHH=FGEHGGEGEHHHDGEB?G@FAGICFCG4GE?>GEGEGCG@HG?
CEEEFCE;E(8FFC<GGEGHA’GFG8E.6C?CGFFAGGC:GEFFFG?
E*GEAGEHHE6HECGGGEC;ACECAGGGCEGGEG?GEEEC(E:EG*
@Clagr-170541-2741/1
TATTTTAAGAATAAGATAATAAAATATATTTAAAGAATAGTGAATCTAT
TAAAAAATTATTATAGAATAAAAATTTCATTTCTATATCTTAATAATAA
GTACTTACTTAGTATTATCTTTATTAATTTATATAATAAGGAAGATATT
ATAGTTAAAAGAATATGTCATAGTGAAGGCATAAGCGATGAAGCTAATA
TGGCTATGAAGCTCTAAAACAGCTATGTGATAACATAAAGCGATGTTCT
AATGG
+
?<???B?
B@DDD<@DDGGGGGFFHIFIFIHHHIIGIHHIHIHIIIHHHIGIHHECH
GCICIEHH=IFHHF58IIIHHCIHHIIII@HFDFFIHIFHIHIEHIFGH
IHF@HHGFHGEHHFHDGGGGHHFEGGHGGEGG?
GGGFE*=GDGGGFGC6EGGEC:?GGGGCFEEEE)GG+GECG<G?
GHAEG(FG:GG*FEC:GFE<FEGFEAG3DFACFEEEE:CEG.EEEGE?
CGCGC:EGCAGFGGGECEGG

The	file	format	conversion	is	a	typical	problem	in	
bioinformatics	analyses	and	in	some	instances	not	reversible

Other	formats	
Nexus	
Paup	
.doc	
txt	
…

Solution	exists…	
http://hannonlab.cshl.edu/fastx_toolkit/	
http://molbiol-tools.ca/Convert.htm	
but	sometimes	are	hard	to	use…

http://hannonlab.cshl.edu/fastx_toolkit/
http://molbiol-tools.ca/Convert.htm

Introduction into Text Processing with PERL

http://seqanswers.com/forums/index.php

http://seqanswers.com/forums/index.php

61

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing

Template	DNA

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments		
4. Identify	and	remove	adapter	part	from	the	sequence	reads

62

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing

Read	Pair	1

Read	Pair	2

Read	Pair	3

Read	Pair	4

Read	Pair	5

Read	Pair	6

Read	Pair	7

Read	Pair	8

Read	Pair	9

Read	Pair	10

Read	Pair	11

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments		
4. Identify	and	remove	adapter	part	from	the	determined	sequences

63

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing

Read	Pair	1
Read	Pair	2
Read	Pair	3
Read	Pair	4
Read	Pair	5
Read	Pair	6
Read	Pair	7
Read	Pair	8
Read	Pair	9
Read	Pair	10
Read	Pair	11

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments		
4. Identify	and	remove	adapter	part	from	the	determined	sequences	
5. Reconstruct	template	sequence	from	the	sequence	reads

Reconstruct	template

Assembly:		

A	hierarchical	data	structure	that	maps	the	sequence	data	
to	a	reconstruction	of	the	target.	It	groups	reads	into	
contigs	and	contigs	into	scaffolds.	Contigs	provide	a	
multiple	sequence	alignment	of	reads	plus	the	consensus	
sequence.	The	scaffolds	(sometimes	called	supercontigs)	
define	the	contig	order	and	orientation	and	the	sizes	of	
the	gaps	between	contigs.	

Why are we here?

l We want to solve problems automatically that
are either too time consuming or too complex
to solve them manually, or that occur so often
that we want to have a standardized1 solution.

Program/Script

1 standardization is a word that you will start appreciating…

A little sad example from the past…

l The task was: “In how many positions do
humans and chimpanzees differ in their ZFX
gene?”

l The solution was: “Print out the alignment, get
equipped with a set of markers and start
counting…”.

A little sad example from the past…

l The task was: “In how many positions do
humans and chimpanzees differ in their ZFX
gene?”

l The solution was: “Print out the alignment, get
equipped with a set of markers and start
counting…”.

l Unfortunately, the alignment was about 100,000 bp in
length :(

Some general and obvious things to
consider

l What is my problem? The more precise you can
formulate it the better!

l What is my problem? The more abstract you
can formulate it the better!

l How can I formulate the problem solution
procedure, i.e. the algorithm?

l What does my input look like? (Are you sure?)
l How should my output look like?
l What can go wrong and how do I capture

errors?

Perl was created by Larry Wall.  
(read his forward to the book “Learning Perl”)  

Perl = Practical Extraction and Report Language
Perl is a scripting language
Perl was originally developed for text processing 

Perl, one solution to your problems…

http://www.unix.org.ua/orelly/perl/learn32/prf1_01.htm

Why Perl ?

lOpen Source project
lPerl is a cross-platform programming language
lPerl is a very popular programming language, especially

for bioinformatics
lPerl is strong in text manipulation
lPerl can easily handle files and directories
lPerl can easily run other programs

Literature about Perl

Documentation of perl functions

A good place to start is the list of all basic Perl functions in the Perl
documentation site:
http://perldoc.perl.org/

http://perldoc.perl.org/

Setting the stage
A very simple Perl script

#!/usr/bin/perl
The following line just prints the string
#’Hello world!’
print "Hello world!";
exit;

The shebang points to the interpreter located at /usr/bin/perl

just a comment

}

The print function
outputs some
information to the
terminal screen

A Perl statement must
end with a semicolon

‘exit’ denotes the
termination of the script
(optional)

Your very first Perl script

#!/usr/bin/perl -w
use strict;
The following line just prints the string
#’Hello world!’
print "Hello world!";
exit;

Now it is (almost) your turn

l Write this script in a text editor
l Save it under ~/Desktop/perl_course/scripts/hello.pl
l Execute this script by visiting the directory and typing ./hello.pl

Your very first Perl script

#!/usr/bin/perl -w
use strict;
The following line just prints the string
#’Hello world!’
print "Hello world!";
exit;

Now it is (almost) your turn

l Write this script in a text editor
l Save it under ~/Desktop/perl_course/scripts/hello.pl
l Execute this script by visiting the directory and typing ./hello.pl

But there are some further things to consider…

Your very first Perl script
Traditionally, Perl scripts are run from a command line interface
Start one by clicking Applications in the top menu bar -> System Tools ->
Terminal

The directory structure of the linux
operating system

Using the command line (shell) in
linux

First let’s go to the correct directory:
pwd: - shows you the current path
cd - change to the home directory ‘~’ from wherever you are
cd ~/Desktop/perl_course - change directory to the perl_course directory
cd scripts - change directory to the scripts directory
ls - list all the files in the directory (you should see your script here)
chmod a+x hello.pl tells your operating system that hello.pl is an executable

Running the Perl script

./hello.pl

Common useful commands in the shell (command line)1:
mkdir my_dir make a new directory called ‘my_dir’ 
cd my_dir change to the sub-directory ‘my_dir’  
cd .. move one directory up 
ls list files 
man dir get help on a particular command, here ‘mkdir’ 
<TAB> (hopefully) auto-complete an input
<up/down> go to previous/next command
<Ctrl>-c Emergency exit to interrupt a process
which perl asks where your perl interpreter is located on this system.
chmod a+x hello.pl tells your operating system that hello.pl is an
executable

Using the command line (shell) in
linux

1 For further explanations about using commands in the shell see our tutorial

Two possible ways to return information

• Print to standard out (the screen)
– We have seen this already:

print “my information for user”;
– For printing advanced formats, such as rounded

numbers, see the printf function in perl.

Two possible ways to return information

• Print to a file on the hard drive
– requires opening a file handle
– this is new, looks complicated, but is not

open (OUT, “>myoutputfile.txt”);
print OUT “my information that should be stored on disk”;
print OUT “some more information”;
close OUT;

– If the file ‘myoutputfile.txt’ is not yet existing, it will be generated on
the fly.

– If the file ‘myoutputfile.txt is already existing, its content will be
completely overwritten! You can tell perl to append the information
by using ‘>>’ instead of ‘>’.

How to advance from here

• Perl scripting becomes more interesting
when we start doing the following things…
– store data in variables within the script
– modifying data within the script
– loading data from various sources and various

formats
– interact dynamically with the user
– modifying data in files
– and outputting data to the screen or to a file

Link to slides and exercises

• http://fsbioinf.biologie.uni-frankfurt.de/
asa2014
– user: asa
– password: asa2014

• Please concentrate on the first set of Tasks
– Task 1.1 - Linux basics
– Task 1.2 - Perl basics
– Task 1.3 - My first Perl script - Printing to

standard out

http://fsbioinf.biologie.uni-frankfurt.de/asa2014

Your very first Perl script

#!/usr/bin/perl -w
use strict;
The following line just prints the string #’Hello world!’
print "Hello world!”;
The following line opens a Filehandle returning an error
if this is not possible (you can take ‘die’ literally)
open (OUT, “>hello.out”) or die “could not open outfile\n”;
print OUT “Hello world!”;
close OUT;
exit;

Now it is really your turn

1. Data type: Scalar

Scalar variables: Numbers & Strings
Perl allows the storage of scalar values in a variable starting with a

$
followed by the name of the variable.

$firstvariable

Variables - always use strict!

Always include the line:
 use strict;
as the first line of every script after the shebang.
• “Strict” mode forces you to declare all variables by my.
• This will help you avoid very annoying bugs, such as spelling mistakes in the
names of variables.

my $varname = 1;
$varName++;

Warning:
Global symbol "$varName" requires explicit package name at ... line ...

Scalar variables: Numbers & Strings
Perl allows the storage of scalar values in a variable starting with a

$
followed by the name of the variable.

$firstvariable
In principle you are free to use any variable name you can imagine
but there are few guidelines
l First time you introduce a variable you have to declare it using ‘my’
l avoid using numbers as names (perl uses e.g. $1, $2,… for its own purpose)
l don’t use $_ or $$ (for the same reason as above)
l don’t use too complex names, e.g. $hghCVEgdiU, as you are prone to mis-

spell them later in the script…
l it might be a good idea to use names that are somehow related to the

information stored in this variable, e.g. $input

Variables

Scalar variables can store scalar values.
Variable declaration my $priority;
Numerical assignment $priority = 1;

String assignment $priority = 'high';

Note: Assignments are evaluated from right to left

Multiple variable declaration my $a, $b;

Copy the value of variable $priority to $a $a = $priority;

Note: Here we make a copy of $priority in $a.

Assignment from right to left

A scalar can be a number.

 3 -20 3.14152965

 1.3e4 (= 1.3 × 104 = 1,300)

 6.35e-14 (= 6.35 × 10-14)

Scalar variables hold numerical values!

You assign a numerical value to a variable simply by using the following
syntax:

$variable = 1;
$othervar = 47;
$thirdvar = 1.777;
$fourthvar = 1e-17;

Strings are anything that we typically consider as letters, words, or sentences. In
biology DNA or protein sequences are among the most commonly used strings.

Scalar variables can ALSO hold string
values1!

1 Note, when working with strings Perl does typically not check for whether you are operating on strings or
numerical values! It simply interprets the variable as string or number according to the context.

You assign a string to a variable simply by using the following syntax:

$strvar = ‘Hello World’; # Holds Hello World
$otherstrvar = ‘AGAACTCCATG’; #A DNA sequence
$thirdstrvar = ‘MCGKRRWT’; # A protein sequence
$fourthstrvar = ‘$strvar\t\n\s’; # holds string ‘$strvar\t\n\s’

Just a comment!

Anything within single quotes will be taken literally!

Construct Meaning

\n Newline

\t Tab

\\ Backslash

\" Double quote

Backslash is an “escape”
character that gives the
next character a special
meaning:

Scalar variables can ALSO hold string
values!

You can assign a string to a variable also by using double quotes:

$strvar = “Hello World”; # Holds ‘Hello World’
$otherstrvar = “AGAACTCCATG”; #A DNA sequence
$thirdstrvar = “MCGKRRWT”; # A protein sequence
$fourthstrvar = “$strvar how are you?”; # holds ‘Hello World how
 # are you?’

Perl will try to interpolate anything within double quotes!!

The first approach to user interaction
l We can assign values to variables by hard-coding the

information into the script

my $output = “Hello World\n”;

l We can ask the user to dynamically enter information via
the command line

my $output = <STDIN>;

#!/usr/bin/perl -w
use strict;
my $message = “Please enter your name\n”;
print $message;
my $user = <STDIN>;
chomp $user;
print “Hello $user, how are you?\n”;
exit;

‘chomp’ removes the
newline character
‘\n’ from a string
(remember, you have
t o h i t e n t e r t o
complete your user
i n p u t o n t h e
command line)!

Using operators to work with variables
An operator takes some values (operands), operates on them, and produces a new
value.

Numerical operators can be used to do math: + - * / %  

$var1 = 2;
$var2 = 3;
$var3 = $var1 + $var1; # $var3 holds the value 4
$var3 = $var3 - $var2; # $var3 holds the value 1
$var4 = $var1 / $var2; # $var4 holds the value 2/3
$var2 = $var2 + 1; Increment $var2 by 1
$var2 = $var2++; # Increment $var2 by 1
$var2 += 1; # Increment $var2 by 1
$var5 = $var1**2; # $var5 holds now the value 4
$var6 = ($var1+$var1)%2; # $var6 holds now 4%2, i.e. 0

{This is all the same!

Using operators to work with variables

String Operators can be used to:
lConcatenate strings using ‘.’
lReplicate strings using ‘x’

$var1 = ‘I am hungry!’;
$var2 = ‘Give me something to eat!’;
print “$var1 $var2”; # Obvious, right?
$var3 = $var1 . $var2; # Holds ‘I am hungry!Give me…’
$var3 = $var1 . ‘ ‘ . $var2; # Holds ‘I am hungry! Give me…’
$var4 = $var1x3; # Holds ‘I am hungry!I am hungry!I am hungry!’
print $var1 . ‘ ‘ . $var2; # same result as line 3 in the example
print (($var1 . ‘ ‘)x3); # prints I am hungry! I am hungry! I am hungry! ’

Please note the last white space!!

String or number?
Perl decides the type of a value depending on its context but it is HIGHLY
advisable to use variables only in the correct context!!

Warning: When you use parentheses in print make sure to put one pair of
parantheses around the WHOLE expression:
print (9+5).'a'; # wrong
print ((9+5).'a'); # right
You will know that you have such a problem if you see this warning:
print (...) interpreted as function at ex1.pl line 3.

 (9x2)+1

 ('9'x2)+1

 '99'+1

 99+1

 100

(9+5).'a'
14.'a'
'14'.'a'
'14a'

}These things can
cause serious trouble

Assigning Values to Variables

For example: $a $b

my $a = 1; 1 undef

my $b = $a; 1 1

$b = $b+1; 1 2

$b++; 1 3

$a--; 0 3

Uninitialised variables

Uninitialised variables (before assignment) receive a special value:
undef  
If uninitialised variables are used a warning is issued:  
my $a; 
print($a+3); 
Use of uninitialised value in addition (+) 
3 
 print("a is :$a:"); 
Use of uninitialised value in concatenation (.) or string 
a is :: 

The length function

The length function returns the length of a string:
 my $str = "hi you";
 print length($str);
 6
Actually print is also a function so you could write:  
 print(length($str));
 6

The split function

The split function splits a string at the specified character:

 my $str = "hi you";
 my ($first, $second) = split / /, $str; # splits the string at each white space
 print “First word is ‘$first’, second word is ‘$second’\n”;

 First word is ‘hi’, second word is ‘you’

Note, the for n split characters in the string split will return a list of n+1 strings!

The substr function
The substr function extracts a substring out of a string.

It receives 3 arguments: substr(EXPR,OFFSET,LENGTH)

Note: OFFSET count starts from 0.

For example:
my $str = "university";
my $sub = substr($str, 3, 5);
$sub is now "versi", and $str remains unchanged.

Also note : You can use variables as the offset and length parameters.
The substr function can do a lot more, Google it and you will see…

Filehandles: Reading from and writing into files

l We already have learned how to write into
files

open (OUT, “>myoutputfile.txt”) or die “could not open\n”;
print OUT “$mytext\n”;
close OUT;

l The syntax for reading from files is similar
open (IN, “myinputfile.txt”) or die “could not open file for
reading\n”;
my $firstline = <IN>;
chomp $firstline;
close IN;
print “First line is $firstline\n”;

Exercises 2

• Task set 2
– Task 2.1 - Printing to a file
– Task 2.2 - Reading from Standard In (the

command line)
– Task 2.3 - Reading from a file
– Task 2.4 - Accessing parts of strings: split and

substr

Adding structure to the code

#!/usr/bin/perl -w
use strict;
print “Please give me a filename\n”;
my $filename = <STDIN>;
chomp $filename;
open (IN, “$filename”) or die “could not find $filename”;
my $firstline = <IN>;
close IN;
my ($firstword) = split / /, $firstline;
print “First word of first line in $filename is $firstword”;

Adding structure to the code

#!/usr/bin/perl -w
use strict;
print “Please give me a filename\n”;
my $filename = <STDIN>;
chomp $filename;
{
open (IN, “$filename”) or die “could not find $filename”;
my $firstline = <IN>;
close IN;
my ($firstword) = split / /, $firstline;
print “First word of first line in $filename is $firstword”;
}

You can enclose
any block of code
by curly brackets.

Adding structure to the code
Scope of variables

#!/usr/bin/perl -w
use strict;
print “Please give me a filename\n”;
my $filename = <STDIN>;
chomp $filename;
{
 open (IN, “$filename”) or die “could not find $filename”;
 my $firstline = <IN>;
 close IN;
 my ($firstword) = split / /, $firstline;
 print “First word of first line in $filename is $firstword”;
}

Any variable
declared with ‘my’
is valid only
l within in the

code block it has
been declared
in!

l and in any code
block nested
within the block
it has been
declared in.

To enhance readability of your script you can use indentation to make
blocks standing out in the code. Perl will ignore this layout!

Adding structure to the code
Scope of variables

#!/usr/bin/perl -w
use strict;
print “Please give me a filename\n”;
my $filename = <STDIN>;
chomp $filename;
{
 open (IN, “$filename”) or die “could not find $filename”;
 my $firstline = <IN>;
 close IN;
 my ($firstword) = split / /, $firstline;
 print “First word of first line in $filename is $firstword”;
}
print “$firstword\n”;

Any variable
declared with ‘my’
is valid only
l within in the

code block it has
been declared
in!

l and in any code
block nested
within the block
it has been
declared in.

Global symbol “$firstword” requires explicit package name at ./hello.pl
line 13. Execution of ./hello.pl aborted due to compilation errors.

OK

NOT OK

Adding structure to the code:
Conditional statements if and else

#!/usr/bin/perl -w
use strict;
print “Please give me a filename\n”;
my $filename = <STDIN>;
chomp $filename;
if (“thisstatement is true”){
 open (IN, “$filename”) or die “could not find $filename”;
 my $firstline = <IN>;
 close IN;
 my ($firstword) = split / /, $firstline;
 print “First word of first line in $filename is $firstword”;
}

You can enclose
any block of code
by curly brackets
and execute it only
IF a given
conditional
statement is true

Adding structure to the code

#!/usr/bin/perl -w
use strict;
print “Please give me a filename\n”;
my $filename = <STDIN>;
chomp $filename;
if (“thisstatement is true”){

open (IN, “$filename”) or die “could not find $filename”;
my $firstline = <IN>;
close IN;
my ($firstword) = split / /, $firstline;
print “First word of first line in $filename is $firstword”;

}
else {

print “Condition was not met. I will exit\n”;
exit;

}

You can enclose
any block of code
by curly brackets
and execute it only
IF a given
conditional
statement is true
ELSE you can do
something
different.

Adding structure to the code

#!/usr/bin/perl -w
use strict;
print “Please give me a filename\n”;
my $filename = <STDIN>;
chomp $filename;
if (-e “$filename”){

open (IN, “$filename”) or die “could not find $filename”;
my $firstline = <IN>;
close IN;
my ($firstword) = split / /, $firstline;
print “First word of first line in $filename is $firstword”;

}
else {

print “I could not find the file $filename. I will exit\n”;
exit;

}

The expression
if (-e “$filename”)
tests if the
specified file exists
in the current
directory. It returns
‘TRUE’ if this is
the case, otherwise
‘FALSE’.

Note, to enhance readability of your script you can use an offset to make
blocks standing out in the code. However, Perl will ignore this layout!

True or False?

• True:
– 1 # 1 is always TRUE
– 1 == 1 # this comparison is also true. Note, you

need two equal signs, otherwise it is an
assignment!

– 1 < 2 # Also true
– $stringvar eq $stringvar # you compare whether

two variables contain the same string. Here of
course true as you compare the variable with itself

– length(‘test’) < 5 # True, as ‘test’ holds only 4
characters.

– defined $anyvar # True, if $anyvar holds a value

True or False?

• FALSE:
– 0 # 0 is always FALSE
– 1 == 2 # Of course false. Note, you need two equal

signs, otherwise it is an assignment!
– 2 < 1 # Also FALSE
– $stringvar ne $stringvar # you compare whether two

variables contain different strings. Here of course
FALSE as you compare the variable with itself

– length(‘test’) > 5 # FALSE, as ‘test’ holds only 4
characters.

– defined $anyvar # FALSE if $anyvar holds no value

True or False?

• The ‘!’ (Not) character turns TRUE into FALSE and
vice versa.
• !0 # ‘Not FALSE’ is TRUE
• !1 # ‘Not TRUE’ is FALSE
• !(defined $anyvar) # True, if $anyvar is NOT

defined
• !(-e “$filename”) # True if a file with this name

does not exist.
• etc…

Conditional statements in the code
General structure

if (condition1) {
some code block1;

}
elsif (condition2) {

some alternative codeblock2;
}
elsif (condition3) {

some alternative codeblock3;
}
else {

last possible codeblock;
}

Conditional statements in the code
Combining conditions with ‘and’ or ‘or’

if (condition1a and condition1b) {
some code block1;

}
elsif (condition2a or condition2b) {

some alternative codeblock2;
}
elsif (condition3) {

some alternative codeblock3;
}
else {

last possible codeblock;
}

Adding complexity to the code: Loops

#!/usr/bin/perl -w
use strict;
print “Please give me a filename\n”;
my $filename = <STDIN>;
chomp $filename;
if (-e “$filename”){

open (IN, “$filename”) or die “could not find $filename”;
my $firstline = <IN>;
close IN;
my ($firstword) = split / /, $firstline;
print “First word of first line in $filename is $firstword\n”;

}
else {

print “I could not find the file $filename. I will exit\n”;
exit;

}

So far, we have executed each line of code zero or one time.
Loops facilitate the repeated execution of code blocks.

Let’s now focus
on this code
block! Reading in
only one line
from a file is not
really satisfying

Some general and obvious things to
consider

l What is my problem? The more precise you can
formulate it the better!

l What is my problem? The more abstract you
can formulate it the better!

l How can I formulate the problem solution
procedure, i.e. the algorithm?

l What does my input look like? (Are you sure?)
l How should my output look like?
l What can go wrong and how do I capture

errors?

while loops

if (-e “$filename”){
open (IN, “$filename”) or die “could not find $filename”;
while (my $firstline = <IN>) {
 my ($firstword) = split / /, $firstline;
 print “First word of line in $filename is $firstword\n”;
 }

}

A while loop
executes a code
block as long as
the conditional
statement is
TRUE!

Remember, <IN> retrieves a line from a filehandle. If issued
repeatedly you will walk line by line through the text. If the end of the

text is reached, <IN> will return FALSE!

for loops

if (-e “$filename”){
open (IN, “$filename”) or die “could not find $filename”;
for (my $i = 0; $i < 100; $i++) {
 my $firstline = <IN>;
 my ($firstword) = split / /, $firstline;
 print “First word of line $i in $filename is $firstword\n”;
 }

}

In for loops you
can specify the
number of
iterations!
However, the
variable
assignment has
now to be moved
into the loop!

for loops

if (-e “$filename”){
open (IN, “$filename”) or die “could not find $filename”;
for (my $i = 0; $i < 100; $i++) {
 my $firstline = <IN>;
 my ($firstword) = split / /, $firstline;
 print “First word of line $i in $filename is $firstword\n”;
 }

}

In for loops you
can specify the
number of
iterations!
However, the
variable
assignment has
now to be moved
into the loop!

initialisation
of the run
index $i

for loops

if (-e “$filename”){
open (IN, “$filename”) or die “could not find $filename”;
for (my $i = 0; $i < 100; $i++) {
 my $firstline = <IN>;
 my ($firstword) = split / /, $firstline;
 print “First word of line $i in $filename is $firstword\n”;
 }

}

In for loops you
can specify the
number of
iterations!
However, the
variable
assignment has
now to be moved
into the loop!

initialisation
of the run
index $i

upper limit of
the run index

$i

for loops

if (-e “$filename”){
open (IN, “$filename”) or die “could not find $filename”;
for (my $i = 0; $i < 100; $i++) {
 my $firstline = <IN>;
 my ($firstword) = split / /, $firstline;
 print “First word of line $i in $filename is $firstword\n”;
 }

}

In for loops you
can specify the
number of
iterations!
However, the
variable
assignment has
now to be moved
into the loop!

initialisation
of the run
index $i

upper limit of
the run index

$i

increment of
the run index

$i

for loops

if (-e “$filename”){
open (IN, “$filename”) or die “could not find $filename”;
for (my $i = 0; $i < 100; $i++) {
 my $firstline = <IN>;
 my ($firstword) = split / /, $firstline;
 print “First word of line $i in $filename is $firstword\n”;
 }

}

In for loops you
can specify the
number of
iterations!
However, the
variable
assignment has
now to be moved
into the loop!

Our for loop runs now exactly 100 times. Thus, we can never be
caught in an infinite loop!

Note, if you increment the index $i by 2 each time, you will pass only
50 times through the loop!

initialisation
of the run
index $i

upper limit of
the run index

$i

increment of
the run index

$i

Revisiting the split function

The split function splits a string at the specified character:

 my $str = "hi you how are you?”;
 my ($first, $second) = split / /, $str; # splits the string at each white space
 print “First word is ‘$first’, second word is ‘$second’\n”;

 First word is ‘hi’, second word is ‘you’, but how about the rest?

We need another type of variables that can hold a list of scalar
values: ARRAYS

@arr

3 2 1 "fred"

@arr

* 2 1 "fred"

 0 1 2 3

Lists and arrays
A list is an ordered set of scalar values: 
 (3,2,1,"fred")
An array is a variable that holds a list: 
 my @arr = (3,2,1,"fred");
 print @arr ; 321fred
You can access an individual array element: 
 print $arr[1]; 2 
 $arr[0] = "*";
 print @arr ; *21fred

3 2 1 "fred"

Manipulating arrays – push & pop

Manipulating arrays – push & pop

my @arr = ('a','b','c','d','e');
print @arr ; abcde

e

a
b
c
d

@arr

Manipulating arrays – push & pop

my @arr = ('a','b','c','d','e');
print @arr ; abcde
push(@arr,'f');
print @arr ; abcdef

e
f

a
b
c
d

@arr

Manipulating arrays – push & pop

my @arr = ('a','b','c','d','e');
print @arr ; abcde
push(@arr,'f');
print @arr ; abcdef

my @arr = ('a','b','c','d','e');

e

a
b
c
d

@arr

Manipulating arrays – push & pop

my @arr = ('a','b','c','d','e');
print @arr ; abcde
push(@arr,'f');
print @arr ; abcdef

my @arr = ('a','b','c','d','e');
my $num = pop(@arr);

ea
b
c
d

@arr $num

Manipulating arrays – push & pop

my @arr = ('a','b','c','d','e');
print @arr ; abcde
push(@arr,'f');
print @arr ; abcdef

my @arr = ('a','b','c','d','e');
my $num = pop(@arr);
print $num; e
print @arr ; abcd

ea
b
c
d

@arr $num

shift & unshift
my @arr = ('a','b','c'); 
print @arr ; abc 
unshift(@arr,'?'); 
print @arr ; ?abc

my @arr = ('a','b','c'); 
my $num = shift(@arr); 
print $num; a 
print @arr ; bc  

0 1 2 3 4

@ARGV

@ARGV

@ARGV

"Hi" "there" 5

@ARGV
It is possible to pass arguments to Perl from the command line. These Command-line
arguments are stored in an array created automatically named @ARGV:

@ARGV

"Hi" "there" 5

@ARGV
It is possible to pass arguments to Perl from the command line. These Command-line
arguments are stored in an array created automatically named @ARGV:

@ARGV

"Hi" "there" 5

@ARGV
It is possible to pass arguments to Perl from the command line. These Command-
line arguments are stored in an array created automatically named @ARGV:
Consider the following example script: print_input.pl

@ARGV

"Hi there" 5

#!/usr/bin/perl -w
use strict;
my $joinedArr = join("\n",@ARGV);
print $joinedArr;
print $ARGV[0] . “\n”;

<ingo> print_input.pl “Hi there” 5
Hi there
5
Hi there
<ingo>

Introduction into Text Processing & Data
Analysis with PERL - Day 2

Hashes, pattern matching, sub-routines

Assigning values to variables

• my $stringVar = ‘test’;
• my $numVar = 7;
• my @anyArr = (1, 8, ‘tedious’);
• my @anyArr2 = ($stringVar, $numVar, @anyArr);
• my $firstEntry = shift(@anyArr2);
• my $lastEntry = pop(@anyArr2);
• push @anyArr, “new entry at the end”;
• unshift @anyArr, “new entry at the beginning”;
• my @splitArr = split / /, $anystring;
• my $anyString = join “ “, @splitArr;

Hashes  
(associative arrays)

Variable types in PERL
Scalar Array Hash

$number  
-3.54

$string  
"hi\n"

@array %hash

=>

=>

=>

Variable types in PERL
Scalar Array Hash

$number  
-3.54

$string  
"hi\n"

@array %hash

=>

=>

=>
$array[0]

Variable types in PERL
Scalar Array Hash

$number  
-3.54

$string  
"hi\n"

@array %hash

=>

=>

=>
$array[0]

$hash{key}

Let's say we want to create a phone book . . .
Enter a name that will be added to the phone book:
Dudi
Enter a phone number:
6409245
Enter a name that will be added to the phone book:
Dudu
Enter a phone number:
6407693

Hash Motivation

Hash – an associative array

An associative array of the phone book suggested in the first slide  
(we will see a more elaborated version later on): 

Hash – an associative array

An associative array of the phone book suggested in the first slide  
(we will see a more elaborated version later on): 

l # Declare. Note, a hash variable always starts with a ‘%’
my %phoneBook;

Hash – an associative array

An associative array of the phone book suggested in the first slide  
(we will see a more elaborated version later on): 

l # Declare. Note, a hash variable always starts with a ‘%’
my %phoneBook;

l # Initialize
%phoneBook = (“Dudi”=>9245, “Dudu”=>7693);

Hash – an associative array

An associative array of the phone book suggested in the first slide  
(we will see a more elaborated version later on): 

l # Declare. Note, a hash variable always starts with a ‘%’
my %phoneBook;

l # Initialize
%phoneBook = (“Dudi”=>9245, “Dudu”=>7693);

Hash – an associative array

% phoneBook

9245"Dudi" =>

7693"Dudu" =>

An associative array of the phone book suggested in the first slide  
(we will see a more elaborated version later on): 

l # Declare. Note, a hash variable always starts with a ‘%’
my %phoneBook;

l # Initialize
%phoneBook = (“Dudi”=>9245, “Dudu”=>7693);

l # Update

$phoneBook{"Dudi"} = 7777;

$phoneBook{"Dudu"} = 4711;

Hash – an associative array

% phoneBook

9245"Dudi" =>

7693"Dudu" =>

An associative array of the phone book suggested in the first slide  
(we will see a more elaborated version later on): 

l # Declare. Note, a hash variable always starts with a ‘%’
my %phoneBook;

l # Initialize
%phoneBook = (“Dudi”=>9245, “Dudu”=>7693);

l # Update

$phoneBook{"Dudi"} = 7777;

$phoneBook{"Dudu"} = 4711;

Hash – an associative array

% phoneBook

9245"Dudi" =>

7693"Dudu" =>

% phoneBook

7777"Dudi" =>

4711"Dudu" =>

An associative array of the phone book suggested in the first slide  
(we will see a more elaborated version later on): 

l # Declare. Note, a hash variable always starts with a ‘%’
my %phoneBook;

l # Initialize
%phoneBook = (“Dudi”=>9245, “Dudu”=>7693);

l # Update

$phoneBook{"Dudi"} = 7777;

$phoneBook{"Dudu"} = 4711;

l # Fetching the value
print $phoneBook{“Dudi"};

 9245

Hash – an associative array

% phoneBook

9245"Dudi" =>

7693"Dudu" =>

% phoneBook

7777"Dudi" =>

4711"Dudu" =>

An associative array of the phone book suggested in the first slide  
(we will see a more elaborated version later on): 

l # Declare. Note, a hash variable always starts with a ‘%’
my %phoneBook;

l # Initialize
%phoneBook = (“Dudi”=>9245, “Dudu”=>7693);

l # Update

$phoneBook{"Dudi"} = 7777;

$phoneBook{"Dudu"} = 4711;

l # Fetching the value
print $phoneBook{“Dudi"};

 9245

Hash – an associative array

% phoneBook

9245"Dudi" =>

7693"Dudu" =>

Note the curly braces!

% phoneBook

7777"Dudi" =>

4711"Dudu" =>

Note, modifying an existing value, and adding a new key=>value pair have the

same syntax!

modifying an existing entry

$phoneBook{“Dudi"} = 7766; (modifying an existing value)

adding a key=>value pair

$phoneBook{“Viri”} = "z"; (adding a new key-value pair)

Delete a key=>value pair

delete($phoneBook{“Viri”});

You can ask whether a certain key exists in a hash: 
if (exists $phoneBook{“Viri”})…

You can ask whether a certain value has been defined in a hash: 
if (defined $phoneBook{“Viri”})…

Reset the hash (to an empty one):

%phoneBook = ();

Hash – an associative array

It is possible to get a list of all the keys in %hash  
my @hashKeys = keys(%hash);  

Similarly you can get an array of the values in %hash  
my @hashVals = values(%hash);

Iterating over hash elements
%hash

5"a" =>

"zzz""bob" =>

"John"50 =>

@hashKeys

"bob" 50"a"

@hashVals

5 "John" "zzz"

:
my @hashKeys = keys(%hash);
for (my $i=0; $i < @hashKeys; $i++) {
 print "The key is $hashKeys[$i]\n”;  
 print "The value is $hash{$hashKeys[$i]}\n”;  
}

Iterating over hash elements
%hash

5"a" =>

"zzz""bob" =>

"John"50 =>

The key is bob  
The value is zzz
The key is a  
The value is 5  
The key is 50  
The value is John

@hashKeys

"bob" 50"a"

@hashVals

5 "John" "zzz"

my @hashKeys = keys(%hash);
my @sortedHK = sort(@hashKeys);

for (my $i=0; $i < @sortedHK; $i++) {
 print "The key is $sortedHK[$i]\n”;  
 print "The value is $hash{$sortedHK[$i]}\n”;  
}

Iterating over hash elements
%hash

5"a" =>

"zzz""bob" =>

"John"50 =>

@hashKeys

"bob" 50"a"

@hashVals

5 "John" "zzz"

Note: The elements are given in an arbitrary order, 
so if you want a certain order use sort:

Pattern matching

We often want to find a certain piece of information within the file, for example:

Pattern matching

We often want to find a certain piece of information within the file, for example:

Pattern matching

1. Extract GI numbers or  
accessions from Fasta

>gi|16127995|ref|NP_414542.1| thr operon …
>gi|145698229|ref|YP_001165309.1| hypothetical …  
>gi|90111153|ref|NP_415149.4| citrate …

We often want to find a certain piece of information within the file, for example:

Pattern matching

1. Extract GI numbers or  
accessions from Fasta

>gi|16127995|ref|NP_414542.1| thr operon …
>gi|145698229|ref|YP_001165309.1| hypothetical …  
>gi|90111153|ref|NP_415149.4| citrate …

CDS 1542..2033  
CDS complement(3844..5180)

We often want to find a certain piece of information within the file, for example:

Pattern matching

1. Extract GI numbers or  
accessions from Fasta

2. Extract the coordinates of all open reading  
frames from the annotation of a genome

>gi|16127995|ref|NP_414542.1| thr operon …
>gi|145698229|ref|YP_001165309.1| hypothetical …  
>gi|90111153|ref|NP_415149.4| citrate …

 Score E 
Sequences producing significant alignments: (bits) Value 
ref|NT_039621.4|Mm15_39661_34 Mus musculus chromosome 15 genomic... 186 1e-45  
ref|NT_039353.4|Mm6_39393_34 Mus musculus chromosome 6 genomic c... 38 0.71  
ref|NT_039477.4|Mm9_39517_34 Mus musculus chromosome 9 genomic c... 36 2.8

CDS 1542..2033  
CDS complement(3844..5180)

We often want to find a certain piece of information within the file, for example:

Pattern matching

1. Extract GI numbers or  
accessions from Fasta

2. Extract the coordinates of all open reading  
frames from the annotation of a genome

All these examples are patterns in the text.

>gi|16127995|ref|NP_414542.1| thr operon …
>gi|145698229|ref|YP_001165309.1| hypothetical …  
>gi|90111153|ref|NP_415149.4| citrate …

 Score E 
Sequences producing significant alignments: (bits) Value 
ref|NT_039621.4|Mm15_39661_34 Mus musculus chromosome 15 genomic... 186 1e-45  
ref|NT_039353.4|Mm6_39393_34 Mus musculus chromosome 6 genomic c... 38 0.71  
ref|NT_039477.4|Mm9_39517_34 Mus musculus chromosome 9 genomic c... 36 2.8

CDS 1542..2033  
CDS complement(3844..5180)

Pattern matching

Finding a sub-string (match) somewhere in a string:

Pattern matching

Finding a sub-string (match) somewhere in a string:

Pattern matching

Finding a sub-string (match) somewhere in a string:

if ($line =~ m/he/) ... remember to use slash (/) and not back-slash

Pattern matching

Finding a sub-string (match) somewhere in a string:

if ($line =~ m/he/) ... remember to use slash (/) and not back-slash

Will be true for “hello” and for “the cat” but not for “good bye” or
“Hercules”.

Pattern matching

Finding a sub-string (match) somewhere in a string:

if ($line =~ m/he/) ... remember to use slash (/) and not back-slash

Will be true for “hello” and for “the cat” but not for “good bye” or
“Hercules”.

You can ignore case of letters by adding an “i” after the pattern:

Pattern matching

Finding a sub-string (match) somewhere in a string:

if ($line =~ m/he/) ... remember to use slash (/) and not back-slash

Will be true for “hello” and for “the cat” but not for “good bye” or
“Hercules”.

You can ignore case of letters by adding an “i” after the pattern:

 m/he/i

Pattern matching

Finding a sub-string (match) somewhere in a string:

if ($line =~ m/he/) ... remember to use slash (/) and not back-slash

Will be true for “hello” and for “the cat” but not for “good bye” or
“Hercules”.

You can ignore case of letters by adding an “i” after the pattern:

 m/he/i

(matches for “the”, “Hello” , “Hercules” and “hEHD”)

Pattern matching

Enhancing pattern matching using regular expressions
Single-character patterns

m/./ Matches any character (except “\n”)

Enhancing pattern matching using regular expressions
Single-character patterns

m/./ Matches any character (except “\n”)

Enhancing pattern matching using regular expressions
Single-character patterns

m/./ Matches any character (except “\n”)

You can also match one of a group of characters:

Enhancing pattern matching using regular expressions
Single-character patterns

m/./ Matches any character (except “\n”)

You can also match one of a group of characters:
m/[atcg]/ Matches “a” or “t” or “c” or “g”  
m/[a-d]/ Matches “a” though “d” (a, b, c or d)

Enhancing pattern matching using regular expressions
Single-character patterns

m/./ Matches any character (except “\n”)

You can also match one of a group of characters:
m/[atcg]/ Matches “a” or “t” or “c” or “g”  
m/[a-d]/ Matches “a” though “d” (a, b, c or d)
m/[a-zA-Z]/ Matches any letter 
m/[a-zA-Z0-9]/ Matches any letter or digit 
m/[a-zA-Z0-9_]/ Matches any letter or digit or an underscore

Enhancing pattern matching using regular expressions
Single-character patterns

m/./ Matches any character (except “\n”)

You can also match one of a group of characters:
m/[atcg]/ Matches “a” or “t” or “c” or “g”  
m/[a-d]/ Matches “a” though “d” (a, b, c or d)
m/[a-zA-Z]/ Matches any letter 
m/[a-zA-Z0-9]/ Matches any letter or digit 
m/[a-zA-Z0-9_]/ Matches any letter or digit or an underscore
m/[^atcg]/ Matches any character except “a” or “t” or “c” or “g”

Enhancing pattern matching using regular expressions
Single-character patterns

TATTAA
TATAATA
CTATATAATAGCTAGGCGCATG

 ✗
 ✔
 ✔

 For example:  
 if ($line =~ m/TATAA[AT]/)

Will this be true for?

Single-character patterns

TATTAA
TATAATA
CTATATAATAGCTAGGCGCATG

Perl provides predefined character classes:
\d a digit (same as: [0-9])  
\w a “word” character (same as: [a-zA-Z0-9_])  
\s a space character (same as: [\t\n\r\f])

 
For example: 

if ($line =~ m/class\.ex\d\.\S/)

Single-character patterns
And their negatives:
\D anything but a digit 
\W anything but a word char 
\S anything but a space char 

class.ex3.1.pl
class.ex3.
my class.ex8.(old)

Perl provides predefined character classes:
\d a digit (same as: [0-9])  
\w a “word” character (same as: [a-zA-Z0-9_])  
\s a space character (same as: [\t\n\r\f])

 
For example: 

if ($line =~ m/class\.ex\d\.\S/)

Single-character patterns
And their negatives:
\D anything but a digit 
\W anything but a word char 
\S anything but a space char 

 ✔
 ✗
 ✔

class.ex3.1.pl
class.ex3.
my class.ex8.(old)

Repetitive patterns

? means zero or one repetitions of what’s before it: 
 m/ab?c/ Matches “ac” or “abc”

Repetitive patterns

? means zero or one repetitions of what’s before it: 
 m/ab?c/ Matches “ac” or “abc”

Repetitive patterns

? means zero or one repetitions of what’s before it: 
 m/ab?c/ Matches “ac” or “abc”

+ means one or more repetitions of what’s before it: 
 m/ab+c/ Matches “abc” ; “abbbbc” but not “ac”

Repetitive patterns

? means zero or one repetitions of what’s before it: 
 m/ab?c/ Matches “ac” or “abc”

+ means one or more repetitions of what’s before it: 
 m/ab+c/ Matches “abc” ; “abbbbc” but not “ac”

Repetitive patterns

? means zero or one repetitions of what’s before it: 
 m/ab?c/ Matches “ac” or “abc”

+ means one or more repetitions of what’s before it: 
 m/ab+c/ Matches “abc” ; “abbbbc” but not “ac”

A pattern followed by * means zero or more repetitions of that pattern: 
 m/ab*c/ Matches “abc” ; “ac” ; “abbbbc”

Repetitive patterns

? means zero or one repetitions of what’s before it: 
 m/ab?c/ Matches “ac” or “abc”

+ means one or more repetitions of what’s before it: 
 m/ab+c/ Matches “abc” ; “abbbbc” but not “ac”

A pattern followed by * means zero or more repetitions of that pattern: 
 m/ab*c/ Matches “abc” ; “ac” ; “abbbbc”

Repetitive patterns

? means zero or one repetitions of what’s before it: 
 m/ab?c/ Matches “ac” or “abc”

+ means one or more repetitions of what’s before it: 
 m/ab+c/ Matches “abc” ; “abbbbc” but not “ac”

A pattern followed by * means zero or more repetitions of that pattern: 
 m/ab*c/ Matches “abc” ; “ac” ; “abbbbc”

Generally – use { } for a certain number of repetitions, or a range: 
 m/ab{3}c/ Matches “abbbc” 
 m/ab{3,6}c/ Matches “a”, 3-6 times “b” and then “c”

Repetitive patterns

? means zero or one repetitions of what’s before it: 
 m/ab?c/ Matches “ac” or “abc”

+ means one or more repetitions of what’s before it: 
 m/ab+c/ Matches “abc” ; “abbbbc” but not “ac”

A pattern followed by * means zero or more repetitions of that pattern: 
 m/ab*c/ Matches “abc” ; “ac” ; “abbbbc”

Generally – use { } for a certain number of repetitions, or a range: 
 m/ab{3}c/ Matches “abbbc” 
 m/ab{3,6}c/ Matches “a”, 3-6 times “b” and then “c”
 m/ab{3,}c/ Matches “a”, “b” 3 times or more and then “c”

Repetitive patterns

? means zero or one repetitions of what’s before it: 
 m/ab?c/ Matches “ac” or “abc”

+ means one or more repetitions of what’s before it: 
 m/ab+c/ Matches “abc” ; “abbbbc” but not “ac”

A pattern followed by * means zero or more repetitions of that pattern: 
 m/ab*c/ Matches “abc” ; “ac” ; “abbbbc”

Generally – use { } for a certain number of repetitions, or a range: 
 m/ab{3}c/ Matches “abbbc” 
 m/ab{3,6}c/ Matches “a”, 3-6 times “b” and then “c”
 m/ab{3,}c/ Matches “a”, “b” 3 times or more and then “c”

Repetitive patterns

? means zero or one repetitions of what’s before it: 
 m/ab?c/ Matches “ac” or “abc”

+ means one or more repetitions of what’s before it: 
 m/ab+c/ Matches “abc” ; “abbbbc” but not “ac”

A pattern followed by * means zero or more repetitions of that pattern: 
 m/ab*c/ Matches “abc” ; “ac” ; “abbbbc”

Generally – use { } for a certain number of repetitions, or a range: 
 m/ab{3}c/ Matches “abbbc” 
 m/ab{3,6}c/ Matches “a”, 3-6 times “b” and then “c”
 m/ab{3,}c/ Matches “a”, “b” 3 times or more and then “c”

Use parentheses to mark more than one character for repetition: 
 m/h(el)*lo/ Matches “hello” ; “hlo” ; “helelello”

Repetitive patterns

TATAAAGAATG
ACTATAATAAAAATG
TATAATGATGTATAATATG

 ✔
 ✔
 ✗

For example: 
 if ($line =~ m/TATAA[AT][ATCG]{2,4}ATG/)

Will this be true for?

Repetitive patterns

TATAAAGAATG
ACTATAATAAAAATG

Consider the following code:

print "please enter a line...\n";
my $line = <STDIN>;
chomp($line);

if ($line =~ m/-?\d+/) {
 print "This line seems to contain a number...\n";
}
else {
 print "This is certainly not a number...\n";
}

Example code

my $filename = "numbers.txt";
open(my $in, “$filename”) or die "cannot open $filename $!";
my $line = <$in>;
while (defined $line) {
 chomp $line;
 if ($line =~ m/-?\d+/) {
 print "This line: '$line' seems to contain a number...\n";
 }
 else {
 print "This '$line' is certainly not a number...\n";
 }
 $line = <$in>;
}

Example code

Replacing a sub string (substitute):
$line = "the cat on the tree";  
$line =~ s/he/hat/;
$line will be turned to “that cat on the tree”

To Replace all occurrences of a sub string add a “g” (for “globally”):
$line = "the cat on the tree";  
$line =~ s/he/hat/g;
$line will be turned to “that cat on that tree”

Substitute one pattern with another

To force the pattern to be at the beginning of the string add a “^”:

 m/^>/ Matches only strings that begin with a “>”

“$” forces the end of string:

 m/\.pl$/ Matches only strings that end with a “.pl”

And together:
 m/^\s*$/ Matches empty lines and all lines that contains only space characters.

Enforce line start/end

Some examples

m/\d+(\.\d+)?/ Matches numbers that may contain a decimal point:

Some examples

m/\d+(\.\d+)?/ Matches numbers that may contain a decimal point:
“10”; “3.0”; “4.75” …

Some examples

m/\d+(\.\d+)?/ Matches numbers that may contain a decimal point:
“10”; “3.0”; “4.75” …

m/^NM_\d+/ Matches Genbank RefSeq accessions like “NM_079608”

Some examples

m/\d+(\.\d+)?/ Matches numbers that may contain a decimal point:
“10”; “3.0”; “4.75” …

m/^NM_\d+/ Matches Genbank RefSeq accessions like “NM_079608”

Some examples

We can extract parts of the pattern by parentheses:
$line = "1.35";  
if ($line =~ m/(\d+)\.(\d+)/) {  
 print "$1\n"; # 1  
 print "$2\n"; # 35  
}

Extracting part of a pattern using special variables $1,
$2, $3…

We can extract parts of the string that matched parts of the pattern that are marked by
parentheses:
my $line = " CDS 87..1109";  
if ($line =~ m/CDS\s+(\d+)\.\.(\d+)/) {  
 print "regexp:$1,$2\n"; # regexp:87,1109  
 my $start = $1;
 my $end = $2;  
}  

Extracting part of a pattern

Usually, we want to scan all lines of a file, and find lines with a specific pattern. E.g.:
my ($start,$end);
foreach $line (@lines) {  
 if ($line =~ m/CDS\s+(\d+)\.\.(\d+)/) {  
 $start = $1; $end = $2;  
 ...  
 ...  
 }  
}  

Finding a pattern in an input file

We can extract parts of the string that matched parts of the pattern that are marked by
parentheses. Suppose we want to match
both $line = " CDS complement(4815..5888)";
and $line = " CDS 6087..8109";  

if ($line =~ m/CDS\s+(complement\()?((\d+)\.\.(\d+))\)?/)
{  
 print "regexp:$1,$2,$3,$4.\n";  
 $start = $3; $end = $4;  
}

•When $line = " CDS complement(4815..5888)";
regexp:complement(,4815..5888,4815,5888.

•When $line = " CDS 6087..8109";
Use of uninitialized value in concatenation...  
regexp:,6087..8109,6087,8109.  
 

Extracting part of a pattern

$1 $2

$3 $4

Subroutines

A function is a portion of code that performs a specific task when called.

	

Functions

Functions we've met:
$newStr = substr ($str,1,4);

@arr = split (/\t/,$line);

push (@arr, $num);

Takes a string and returns a sub-string
Splits a string into an array

Pushes a scalar to the end of an array

A function is a portion of code that performs a specific task when called.

Functions

Functions can have arguments and can return values:

$start = substr ($str,1,4);

Arguments:
(STRING, OFFSET,

LENGTH)

Return value:
This function returns a string

A subroutine is a user-defined function.
sub SUB_NAME {  
 # Do something
 ...  
}

Subroutines

sub printHello {  
 print "Hello World!\n";  
}
sub bark {
 print "Woof-woof\n";  
}
sub reverseComplement {
 my ($seq)=@_;
 $seq =~ tr/ACGTacgt/
TGCAtgca/;
 $revSeq = reverse ($seq);
 return $revSeq;
}

Subroutines can be placed
anywhere in the code, but are

usually stacked together at
the beginning or the end of

the script.

To invoke (execute) a subroutine we call it by its name with its arguments:
SUB_NAME(ARGUMENTS);

Subroutines

For example:
	 bark();  
 Woof-woof  

 
my $seq = "GCAGTG";  
my $rev = reverseComplement($seq);
print $rev;  
 CACTGC

Ø Code in a subroutine is reusable as it has a defined input and returns a
defined output. 

For example: a subroutine to produce the reverse-complement of a DNA
sequence

Ø A subroutine can provide a general solution for different situations.  
For example: read a FASTA file

Ø Encapsulation: A well defined task can be outsourced in a subroutine, making
the main script simpler and easier to read and understand.

Why use subroutines?

Get the file name
my $filename = <STDIN>;
chomp $filename;

Read fasta sequence from file
open (my $in, "<", $filename) or die "Can't open file: '$filename' $!";
my $line = <$in>;
my $seq;
while (defined $line) {
 chomp $line;
 if ($line =~ m/^>/)
 {
 $line = <$in>;
 }
 else {
 $seq = $seq.$line;
 $line = <$in>;
 }
}
close ($in);

Reverse complement the sequence 
$seq =~ tr/ACGTacgt/TGCAtgca/;
$revSeq = reverse ($seq);

Print the reverse complement in fasta format 
my $i = 0;
while (($i+1) * 70 < length ($revSeq)) {
 my $fastaLine = substr($revSeq, $i * 70, 70);
 print $fastaLine."\n";
 $i++;
}
$fastaLine = substr($revSeq, $i * 70);
print $fastaLine."\n"

Why use subroutines? - Example

Much better than this

>gi|229577210|ref|NM_001743.4| Homo sapiens calmodulin 2 (CALM2), mRNA
ATGGCTGACCAACTGACTGAAGAGCAGATTGCAGAATTCAAAGAAGCTTTTTCACTATTTGACAAAGATG
GTGATGGAACTATAACAACAAAGGAATTGGGAACTGTAATGAGATCTCTTGGGCAGAATCCCACAGAAGC
AGAGTTACAGGACATGATTAATGAAGTAGATGCTGATGGTAATGGCACAATTGACTTCCCTGAATTTCTG
ACAATGATGGCAAGAAAAATGAAAGACACAGACAGTGAAGAAGAAATTAGAGAAGCATTCCGTGTGTTTG
ATAAGGATGGCAATGGCTATATTAGTGCTGCAGAACTTCGCCATGTGATGACAAACCTTGGAGAGAAGTT
AACAGATGAAGAAGTTGATGAAATGATCAGGGAAGCAGATATTGATGGTGATGGTCAAGTAAACTATGAA
GAGTTTGTACAAATGATGACAGCAAAGTGA

my filename = $ARGV[0];

Read fasta sequence from file
$seq = readFastaFile($fileName);

Reverse complement the sequence 
$revSeq = reverseComplement($seq);

Print the reverse complement in fasta format 
printFasta($revSeq);

Subroutines definition...
....

Why use subroutines? - Example

A general solution: works
with different files

Can be invoked from
many points in the code

And the program is
beautiful

my $bart4today = "I do not have diplomatic immunity";
bartFunc($bart4today ,100);

sub bartFunc {  
 my ($string, $times) = @_;  
 print $string x $times;  
}  

Subroutine example

my $bart4today = "I do not have diplomatic immunity";
bartFunc($bart4today ,100);

sub bartFunc {  
 my ($string, $times) = @_;  
 print $string x $times;  
}  

Subroutine example

We pass arguments to the
subroutine

my $bart4today = "I do not have diplomatic immunity";
bartFunc($bart4today ,100);

sub bartFunc {  
 my ($string, $times) = @_;  
 print $string x $times;  
}  

Subroutine example

We pass arguments to the
subroutine

Inside the subroutine
block they are saved in

the special array @_

my $bart4today = "I do not have diplomatic immunity";
bartFunc($bart4today ,100);

sub bartFunc {  
 my ($string, $times) = @_;  
 print $string x $times;  
}  

Subroutine example

I do not have diplomatic immunity
I do not have diplomatic immunity
I do not have diplomatic immunity
I do not have diplomatic immunity  

...

We pass arguments to the
subroutine

Inside the subroutine
block they are saved in

the special array @_

my $bart4today = "I do not have diplomatic immunity";
bartFunc($bart4today ,100);

sub bartFunc {  
 my ($string, $times) = @_;  
 print $string x $times;  
}  

Subroutine example

I do not have diplomatic immunity
I do not have diplomatic immunity
I do not have diplomatic immunity
I do not have diplomatic immunity  

...

We pass arguments to the
subroutine

Inside the subroutine
block they are saved in

the special array @_

$reversed = reverseComplement();

Returning return values:

Return value

sub reverseComplement {
my ($seq) = @_;

 $seq =~ tr/ACGT/TGCA/;
 my $revSeq = reverse $seq;  
 return $revSeq;  
}

"ACGTTA"

The return
statement ends the
execution of the

subroutine and returns
a value

$reversed

@_

"ACGTTA"

$seq "ACGTTA"$seq "TGCAAT"

$revSeq "TAACGT"

"TAACGT"

$reversed = reverseComplement();

Returning return values:

Return value

sub reverseComplement {
my ($seq) = @_;

 $seq =~ tr/ACGT/TGCA/;
 my $revSeq = reverse $seq;  
 return $revSeq;

 print "I am the walrus!"
}

"ACGTTA"

Anything after the return
statement will be ignored

$reversed

@_

"ACGTTA"

$seq "ACGTTA"$seq "TGCAAT"

$revSeq "TAACGT"

"TAACGT"

my ($firstChar, $lastChar) = firstLastChar("Yellow");

Return list

sub firstLastChar{
 my ($string) = @_;
 $string =~ m/^(.).*(.)$/;
 return ($1,$2);
}

 print "First char: $firstChar, last one: $lastChar.\n";
 First char: Y, last one: w.

my ($firstChar, $lastChar) = firstLastChar("Yellow");

Return list

sub firstLastChar{
 my ($string) = @_;
 $string =~ m/^(.).*(.)$/;
 return ($1,$2);
}

We pass an argument

 print "First char: $firstChar, last one: $lastChar.\n";
 First char: Y, last one: w.

my ($firstChar, $lastChar) = firstLastChar("Yellow");

Return list

sub firstLastChar{
 my ($string) = @_;
 $string =~ m/^(.).*(.)$/;
 return ($1,$2);
}

The return value is a
list of two elements

We pass an argument

 print "First char: $firstChar, last one: $lastChar.\n";
 First char: Y, last one: w.

my ($firstChar, $lastChar) = firstLastChar("Yellow");

Return list

sub firstLastChar{
 my ($string) = @_;
 $string =~ m/^(.).*(.)$/;
 return ($1,$2);
}

The return value is a
list of two elements

We pass an argument

 print "First char: $firstChar, last one: $lastChar.\n";
 First char: Y, last one: w.

$lastChar
my ($firstChar, $lastChar) = firstLastChar("Yellow");

Return list

sub firstLastChar{
 my ($string) = @_;
 $string =~ m/^(.).*(.)$/;
 return ($1,$2);
}

$firstChar

The return value is a
list of two elements

We pass an argument

 print "First char: $firstChar, last one: $lastChar.\n";
 First char: Y, last one: w.

$lastChar
my ($firstChar, $lastChar) = firstLastChar("Yellow");

Return list

sub firstLastChar{
 my ($string) = @_;
 $string =~ m/^(.).*(.)$/;
 return ($1,$2);
}

@_

"Yellow"

$firstChar

The return value is a
list of two elements

We pass an argument

 print "First char: $firstChar, last one: $lastChar.\n";
 First char: Y, last one: w.

$lastChar
my ($firstChar, $lastChar) = firstLastChar("Yellow");

Return list

sub firstLastChar{
 my ($string) = @_;
 $string =~ m/^(.).*(.)$/;
 return ($1,$2);
}

@_

"Yellow"

$firstChar

The return value is a
list of two elements

We pass an argument

 print "First char: $firstChar, last one: $lastChar.\n";
 First char: Y, last one: w.

$lastChar
my ($firstChar, $lastChar) = firstLastChar("Yellow");

Return list

sub firstLastChar{
 my ($string) = @_;
 $string =~ m/^(.).*(.)$/;
 return ($1,$2);
}

@_

$string

"Yellow"

$firstChar

The return value is a
list of two elements

We pass an argument

 print "First char: $firstChar, last one: $lastChar.\n";
 First char: Y, last one: w.

$lastChar
my ($firstChar, $lastChar) = firstLastChar("Yellow");

Return list

sub firstLastChar{
 my ($string) = @_;
 $string =~ m/^(.).*(.)$/;
 return ($1,$2);
}

@_

$string "Yellow"

"Yellow"

$firstChar

The return value is a
list of two elements

We pass an argument

 print "First char: $firstChar, last one: $lastChar.\n";
 First char: Y, last one: w.

$lastChar
my ($firstChar, $lastChar) = firstLastChar("Yellow");

Return list

sub firstLastChar{
 my ($string) = @_;
 $string =~ m/^(.).*(.)$/;
 return ($1,$2);
}

@_

$string "Yellow"

"Yellow"

$firstChar

The return value is a
list of two elements

We pass an argument

 print "First char: $firstChar, last one: $lastChar.\n";
 First char: Y, last one: w.

$lastChar
my ($firstChar, $lastChar) = firstLastChar("Yellow");

Return list

sub firstLastChar{
 my ($string) = @_;
 $string =~ m/^(.).*(.)$/;
 return ($1,$2);
}

@_

$string "Yellow"

"Yellow"

$firstChar

$1 "Y" $2 "w"

The return value is a
list of two elements

We pass an argument

 print "First char: $firstChar, last one: $lastChar.\n";
 First char: Y, last one: w.

$lastChar
my ($firstChar, $lastChar) = firstLastChar("Yellow");

Return list

sub firstLastChar{
 my ($string) = @_;
 $string =~ m/^(.).*(.)$/;
 return ($1,$2);
}

@_

$string "Yellow"

"Yellow"

$firstChar

$1 "Y" $2 "w"
The subroutine returns a

list of two elements.

The return value is a
list of two elements

We pass an argument

 print "First char: $firstChar, last one: $lastChar.\n";
 First char: Y, last one: w.

$lastChar
my ($firstChar, $lastChar) = firstLastChar("Yellow");

Return list

sub firstLastChar{
 my ($string) = @_;
 $string =~ m/^(.).*(.)$/;
 return ($1,$2);
}

@_

$string "Yellow"

"Yellow"

$firstChar

"Y"

$1 "Y"

"w"

$2 "w"
The subroutine returns a

list of two elements.

The return value is a
list of two elements

We pass an argument

 print "First char: $firstChar, last one: $lastChar.\n";
 First char: Y, last one: w.

When a variable is defined using my inside a subroutine:
• It does not conflict with a variable by the same name outside the subroutine
• Its existence is limited to the scope of the subroutine

sub printHello {  
 my ($name) = @_;  
 print "Hello $name\n";  
}  
my $name = "Liko";  
printHello("Heftziba");  
print "Bye $name\n";

Variable scope

When a variable is defined using my inside a subroutine:
• It does not conflict with a variable by the same name outside the subroutine
• Its existence is limited to the scope of the subroutine

sub printHello {  
 my ($name) = @_;  
 print "Hello $name\n";  
}  
my $name = "Liko";  
printHello("Heftziba");  
print "Bye $name\n";

Variable scope

 Hello Heftziba

When a variable is defined using my inside a subroutine:
• It does not conflict with a variable by the same name outside the subroutine
• Its existence is limited to the scope of the subroutine

sub printHello {  
 my ($name) = @_;  
 print "Hello $name\n";  
}  
my $name = "Liko";  
printHello("Heftziba");  
print "Bye $name\n";

Variable scope

 Hello Heftziba
 Bye Liko

When a variable is defined using my outside a subroutine:
• It is accessible inside the subroutine
my $text = "Hello World!\n"
sub printHello {  
 print $text;  
}  
printHello();  

Variable scope

When a variable is defined using my outside a subroutine:
• It is accessible inside the subroutine
my $text = "Hello World!\n"
sub printHello {  
 print $text;  
}  
printHello();  

Variable scope

 Hello World!

We learned the default sort, which is lexicographic:
 my @arr = (8,3,45,8.5);

 my @sorted = sort(@arr);

 print "@sorted";

 3 45 8 8.5

To sort by a different order rule we need to give a comparison subroutine – a
subroutine that compares two scalars and says which comes first 
 sort COMPARE_SUB (@array);

Sort revision

no comma here

sort COMPARE_SUB (LIST);

COMPARE_SUB is a subroutine that compares two special scalars: $a and $b
which are any two elements from the list of items to be compared.
The subroutine determines which comes first (by returning 1, 0 or -1). For
example:
	 sub compareNumber {  
 if ($a > $b) {return 1;}  
 elsif ($a == $b) {return 0;}  
 else {return -1;}  
 }

 my @sorted = sort compareNumber (8,3,45,8.5);

 print "@sorted\n";

 3 8 8.5 45

Sorting numbers

no comma here

The <=> operator does exactly that – it returns 1 for “greater than”, 0 for
“equal” and -1 for “less than”:
	 sub compareNumber {  
 return $a <=> $b;  
 }  
 print sort compareNumber (8,3,45,8.5);

For easier use, you can use a temporary subroutine definition in the same line:
	 print sort {return $a<=>$b;} (8,3,45,8.5);

or just:
	 print sort {$a<=>$b;} (8,3,45,8.5);

The operator <=>

What happens if we want to pass an array to a subroutine?
@_ Passing variables

my $text = "Hello";
my @array = (1,3,5,8,13);

sub fooBar {
 my ($sub_text,@sub_array) = @_;
 print $sub_text."\n";
 print @sub_array;
}

fooBar($text,@array);

Hello
135813

What happens if we want to pass an array to a subroutine?
@_ Passing variables

my $text = "Hello";
my @array = (1,3,5,8,13);

sub fooBar {
 my (@sub_array,$sub_text) = @_;
 print $sub_text."\n";
 print @sub_array;
}

fooBar(@array,$text);

135813Hello

And if we want to pass multiple arrays?
@_ Passing variables

my @array_one = ("a","b","c","d");
my @array_two = (1,3,5,8,13);

sub fooBar {
 my (@sub_array_one,@sub_array_two) = @_;
 print @sub_array_one;
 print @sub_array_two;
}

fooBar(@array_one,@array_two);

abcd135813

A reference to a variable is a scalar value that “points” to another variable.
\@array and \%hash return a reference to the array/hash itself.

References

my @array = ("this","is","an","array");
print join(" ",@array)."\n";

my $array_ref = \@array;
print "this is the reference to the array: ".$array_ref;

this is an array
this is the reference to the array: ARRAY(0x7fbd5082add8)

A reference to a variable is a scalar value that “points” to another variable.
\@array and \%hash return a reference to the array/hash itself.
To access the variables content you will have to dereference it.

References

my @array = ("this","is","an","array");
my $array_ref = \@array;
print "this is a reference to the array: ".$array_ref."\n";
print "it's content is: ". join(" ",@{$array_ref});

this is a reference to the array: ARRAY(0x7fd17902add8)
it's content is: this is an array

If we want to pass arrays or hashes to a subroutine, we should pass a reference:
Passing variables by reference

Passing array references:
subRoutine (\@arr);

Passing hash references:
subRoutine (\%hash);

Dereferencing arrays:
sub subRoutine {
 my ($arrRef) = @_;
 my @arr = @{$arrRef};
 ...
Dereferencing hashes:
sub subRoutine {
 my ($hashRef) = @_;
 my %hash = %{$hashRef};
 ...

my @petArr = ('Liko','Albee','Louis');
printPets (\@petArr);

Passing references:

Passing variables by reference

sub printPets {  
 my ($petRef) = @_;
 foreach my $pet (@{$petRef}) {
 print "Good $pet\n";
 }  
}

@petArr

We create a reference to
the array

'Albee
'

'Liko' 'Louis'

De-reference of $petRef

Good Liko
Good Albee
Good Louis

Similarly, to return a hash use a reference:
sub getDetails {
 my %details;
 $details{"name"} = <STDIN>;  
 $details{"address"} = <STDIN>;
 ...  
 return \%details;
}

my $detailsRef = getDetails();

In this case the hash continues to exist outside the subroutine!
To dereference use:
my %detailHash = %{$detailsRef}

Returning variables by reference

Exercises

1. Write a script that reads the text of “On the Origin of
Species” and gives you the word frequency for each word
used in it. Print out:

1. The number of unique words (ignore upper/lowercase)
used in the text

2. the word/frequency combination in order of decreasing
frequency

2. Modify the script so that it will not count words if they are
shorter than a user-defined threshold and contain lowercase
characters (e.g. if the threshold is ≤3 “DNA” should be
counted, “The” should not).

Exercises II

Darwinism 1865 6
Darwinism 1866 3
Darwinism 1867 2
Darwinism 1868 6
Darwinism 1869 22
Darwinism 1870 71
Darwinism 1871 136
Darwinism 1872 195
Darwinism 1873 142
Darwinism 1874 319
Darwinism 1875 156
Darwinism 1876 308

Optional: The file books_us_english_1800_1899.csv contains word
counts found in english books published between 1800 & 1899, taken from
Google ngrams. The first row gives the word, the second the year of
publication, the third the number the word is found in that year.

Edit your script from the last exercise so that it creates the word
frequencies for all words found in that century. Use this data to see which
words are over- or under-represented in “On the Origin of Species”

The whole file is ~3.5 GB in size, so don’t

read it all at once

