
Molecular	Evolution	and	Bioinformatics

Reference	based	sequence	mapping

Literature

How	to	map	billions	of	short	reads	onto	
genomes?		
Trapnell	and		Salzberg	Nature	Biotechnology	27,	
455	-	457	(2009)	
doi:10.1038/nbt0509-455	

Ultrafast	and	memory-efficient	alignment	of	
short	DNA	sequences	to	the	human	genome.	
Langmead	et	al.	Genome	Biology	10:R25	(2009)	
doi:10.1186/gb-2009-10-3-r25

3

What	do	we	need	short	read	mapping	for?  
Assembly	of	whole	genome	shotgun	sequencing	data

Read	Pair	1
Read	Pair	2
Read	Pair	3
Read	Pair	4
Read	Pair	5
Read	Pair	6
Read	Pair	7
Read	Pair	8
Read	Pair	9
Read	Pair	10
Read	Pair	11

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments		
4. Identify	and	remove	adapter	part	from	the	determined	sequences	
5. Reconstruct	template	sequence	from	the	sequence	reads

Reconstruct	template

4

Shotgun	sequencing	and	reference	guided	sequence	assembly	

Reference	Sequence

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments		
4. Remove	adapter	part	from	the	determined	sequences	
5. Reconstruct	template	sequence	from	the	sequence	reads	

1. Reference	guided	sequence	assembly:	map	reads	to	a	reference	sequence.	

a) e.g.	genome	of	a	different	individual	from	the	same	species	to	study	species	diversity	
b) e.g.	genome	of	a	closely	related	species

Reference	sequence	

Read	Pair	1
Read	Pair	2
Read	Pair	3
Read	Pair	4
Read	Pair	5
Read	Pair	6
Read	Pair	7
Read	Pair	8
Read	Pair	9
Read	Pair	10
Read	Pair	11

Note	that	reads	can	map	equally	good	to	more	than	one	position	in	the	
reference	genome,	e.g.	due	to	repeats	in	the	reference.

Further	short	read	applications:	Mapping	of	RNA	seq

from	Oshlack	et	al.	Genome	Biology	2010,	11:220

RNA-seq	mapping	helps	building	hypotheses	concerning	gene	structure

from	Oshlack	et	al.	Genome	Biology	2010,	11:220

Further	short	read	applications

• Genotyping

• ChIP-seq, CLIP-Seq, Methyl-seq

GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT

TCGGAAATT
CGGAAATTT
CGGAAATTT

GGAAATTTG

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC…
ATAC……CC

	GAAATTTGC

Goal: identify variations

Goal: classify, measure
significant peaks

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC…
GCGCCCTA

GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT
TTGCGGTA
GCGGTATA

GTATAC…

TCGGAAATT
CGGAAATTT

CGGTATAC

TAGGCTATA
AGGCTATAT
AGGCTATAT
AGGCTATAT
GGCTATATG
CTATATGCG

…CC
…CC
…CCA
…CCA
…CCAT

ATAC…
C…
C…

…CCAT
…CCATAG TATGCGCCC

GGTATAC…
CGGTATAC

ChIP:	Chromatin	Immunoprecipitation,	CLIP:	Cross-linking	immunoprecipitation	

Challenges

• mapping	millions/billions	of	reads	to	a	large	
genome	is	hard	

– how	quickly	can	we	map	the	reads	to	the	genome?	
– how	do	we	deal	with	multiple	mapping	positions?	
– how	do	we	deal	with	sequencing	errors	and	genetic	
divergence/diversity		

– how	do	we	deal	with	reads	that	span	intron-exon	
boundaries?	

Short	Read	Alignment

• Given a reference and a set of reads, report at least one “good” local
alignment for each read if one exists
– Approximate answer to: from where in genome did the read

originate?

What is “good”?

…TGATCATA…
 GATCAA

…TGATCATA…
 GAGAAT

better than

…TGATATTA…
 GATcaT

…TGATcaTA…
 GTACAT

better than

– Fewer mismatches is better
– Failing to align a low-quality

base is better than failing to
align a high-quality base

Finding	mapping	positions	of	reads	in	genomes	is,	in	principle,	a	pattern	
matching	problem.	We	search	for	the	occurrence	of	short	words	in	long	

sentences.

Finding	mapping	positions	is,	in	principle,	very	easy!

Searchstring: AATGAGACATGAA

Query1: CATG
Query2: ATGT

Finding	mapping	positions	is,	in	principle,	very	easy.	Just	slide	the	word	
along	the	sequence	and	stop	when	either	end	of	sequence	is	reached	

or	mapping	position	is	found

Naïve	approach

Searchstring: AATGAGACATGAA
CATG

1234567891234

Searchstring: AATGAGACATGAA

Query1: CATG
Query2: ATGT

Finding	mapping	positions	is,	in	principle,	very	easy.	Just	slide	the	word	
along	the	sequence	and	stop	when	either	end	of	sequence	is	reached	

or	mapping	position	is	found

Naïve	approach

Searchstring: AATGAGACATGAA
1234567891234

CATG

Searchstring: AATGAGACATGAA

Query1: CATG
Query2: ATGT

Finding	mapping	positions	is,	in	principle,	very	easy.	Just	slide	the	word	
along	the	sequence	and	stop	when	either	end	of	sequence	is	reached	

or	mapping	position	is	found

Naïve	approach

Searchstring: AATGAGACATGAA
1234567891234

CATG

Searchstring: AATGAGACATGAA

Query1: CATG
Query2: ATGT

Finding	mapping	positions	is,	in	principle,	very	easy.	Just	slide	the	word	
along	the	sequence	and	stop	when	either	end	of	sequence	is	reached	

or	mapping	position	is	found

Naïve	approach

Searchstring: AATGAGACATGAA
1234567891234

CATG

Searchstring: AATGAGACATGAA

Query1: CATG
Query2: ATGT

Finding	mapping	positions	is,	in	principle,	very	easy.	Just	slide	the	word	
along	the	sequence	and	stop	when	either	end	of	sequence	is	reached	

or	mapping	position	is	found

Naïve	approach

Searchstring: AATGAGACATGAA
1234567891234

CATG

Full	match	found,	
Output	resultQuery1	maps	to	position	8-12	in	searchstring

Searchstring: AATGAGACATGAA

Query1: CATG
Query2: ATGT

Finding	mapping	positions	is,	in	principle,	very	easy.	Just	slide	the	word	
along	the	sequence	and	stop	when	either	end	of	sequence	is	reached	

or	mapping	position	is	found

Naïve	approach

Searchstring: AATGAGACATGAA
TTGT

1234567891234

At	most	n-k	comparisons,	with	n	
is	the	length	of	the	search	string,	
and	k	is	the	query	length	(read	
length).	
This	is	not	feasible	for	short	read	
mapping.

Searchstring: AATGAGACATGAA

Query1: CATG
Query2: ATGT

Indexing	speeds	up	searches

Indexing	speeds	up	searches

1) Decide	on	a	word	length	k,	e.g.,	k=3	
2) Build	hash	table	from	search	string,	

storing	every	word	occurring	in	S	
together	with	its	start	position.	

3) Process	query	and	search	for	each	word	
occurring	in	Q1	whether	it	is	in	the	hash	
table.	

4) Repeat	for	Q2.	

Kmer Position

CAT 1,8

ATG 2,9

TGA 3,10

GAG 4

AGA 5

GAC 6

ACA 7

GAA 11

Kmer Position

GAG 1

AGA 2

Q1

Two	lookups	are	sufficient	to	find	Q1	in	S

Searchstring: CATGAGACATGAA

Query1: GAGA
Query2: CATG
Query3: ATGT

Main	differences	between	mapping	approaches

Kmer Position

CAT 1,8

ATG 2,9

TGA 3,10

GAG 4

AGA 5

GAC 6

ACA 7

GAA 11

Kmer Position

CAT 1

ATG 2

Q2

1)	How	does	the	mapper	decide	when	the	
query	maps	multiple	times	to	the	sequence?

Mapping	position	of	Q2:	1-4	AND	8-11

Relevant	e.g.	for	RNA	seq	quantifying	gene	
expression	and	for	Chip-Seq	as	you	must	not	
consider	a	read	more	than	once.	

Main	differences	between	mapping	approaches

Kmer Position

CAT 1,8

ATG 2,9

TGA 3,10

GAG 4

AGA 5

GAC 6

ACA 7

GAA 11

Kmer Position

ATG 1

TGT 2

Q3

The	2nd	lookup	indicates	that	Q3	is	‘almost’	in	S

2)	How	does	the	mapper	deal	with	queries	
that	‘almost’	match	the	reference?	

Q3	matches	the	reference	with	one	mismatch

Relevant	for	sensitivity	and	specificity	of	the	
mapping.	Allowing	more	mismatches	
increases	sensitivity	(consider	sequencing	
error	and	genetic	diversity)	but	decreases	
specificity	(more	false	positives).

O
ne	m

ism
atch

Main	differences	between	mapping	approaches

Suffix tree Suffix array Seed hash tables
Many variants, incl. spaced seeds

$BANANA	
A$BANAN	
ANA$BAN	
ANANA$B	
BANANA$	
NA$BANA	
NANA$BA

Burrows Wheeler
Transformation

3)	What	kind	of	index	does	the	mapper	use?

Relevant	for	speed	and	memory	footprint	of	
the	mapper

The	“traditional	way”:	Hash	tables

• Used	by	MAQ,	Eland,	SOAP,	SHRiMP,	ZOOM,	
partially	by	Mosaik

24

Approach:		
1) Use	a	‘hash-function’	to	transform	pattern	P	into	a	numerical	hash	value	hP.	

1) Search	the	text	T	starting	from	left	for	words	of	length	|P|	having	the	same	hash	
value	as	P.		

1) Given	a	word	K	with	hk	=	hP	was	found,	perform	an	exact	string	comparison	to	
verify	that	K	==	P.	(Note,	the	projection	of	words	with	length	|P|	in	the	space	of	
hash	values	is	not	injective	(linkseindeutig!).

0

1

2

2

1

2
1

0 1
1

0
1

2
1

1 1
0

1
2

The	use	of	‘hashing’	in	exact	pattern	search  
(Rabin-Karp;	O(n+m))	

*JUST	AN	EXAMPLE:	v(A)=1,	v(C)=2,	v(G)=3,	v(T)=4;	mod=3

‘AGC’	
Sum	up	the	values*	for	each	letter	
in	P,	divide	by	prime	number	mod	
and	take	the	rest	as	hash	value	

hAGC	=	(1+2+3)%3

0

ACTTGAACAAGCTTGAGATCAGGAGGGGAGA

1

1

2

2

2

1

1

1

2

0

25

Idea:	Speed	up	pattern	search	by	creating	look-up	tables	storing	the	hash	values		
1) Search	the	text	T	starting	from	left	for	words	of	length	k	and	compute	their	hash	

value	hk	

1) Store	the	hash	values	together	with	the	starting	point	of	the	corresponding	words	
in	a	hash	table.	Note,	a	hash	table	is	nothing	but	a	special	way	of	indexing	your	
data,	just	like	a	phone	book.	This	will	provide	direct	access	to	your	potential	
matches	in	the	pattern	search	once	you	know	the	hash	value	of	P.

‘hashing’	in	combination	with	hash	tables	help	to	reduce	the	average	time	
complexity	of	the	pattern	search	to	O(1),	i.e.	constant	in	time* 

*note	that	this	ignores	the	time	and	space	you	need	to	populate	your	hash	table!

ACTTGAACAAGCTTGAGATCAGGAGGGGAGA

2

2 1

0

1

2

2

1

2
1

0 1
1

0
1

2 1
1

1
0

1
21

1

2

1

1
2

0

Hash	value Position	in	string

0 10,11,20,25,26

1 1,2,6,7,8,12,15,18,19,21,22,23,24,27,28

2 3,4,5,9,13,14,16,17,29

gatgtgacatacctgttctactgaggct

GENOME
ttcagttatccagaaaatgctattttcccaaaatgaaatctaaaatagtaactcaagtg
aaacattgtcaggtgtgtaaggaaggaaaatatgaagggctacccacaaacccacaaac
aacggaaactccaattcctaagtttccgggacacactattcatatagatataatttcta
cagacaaaaacgggtacttacggcaattcacaaattttcaaaacttgcgaaagcaaaaa
taaaaaaaattcaaaatcaatagaagacataagaaaacctttacatgacatcttatttt
attttggagtaccaaaatacgttgtaatggatatagaaaaatcctttaattccgcaaca
acagcctttatgatgaaagaccagctgggcatacaaattttcaaagcatccccttataa
aagttctgtaaacggacaaatagaacggtttcattctatcctcgctgaaattaaaagat
gtttaaaaactaaacaggtacaccgaacatttgaagaacagttcaattcagctgtctag
gaatataactacacaattcaccctgtatcaaaaatacaaaacaaaataacgcccttaaa
aatatttttggcagaaatataaccactgatccaggaaaatatgacgaaagcagataagg
caacatcgaaaacctataatcaaaacaggcaacaggcttaaaaaccataacgaaaaaag
caataagatcaaagattatgagccaggacaaacagtttttataaagcaaatcacaaggc
caggttctaagctgtacaagaaagaaacattaaaagaaaacagacaaacatttgttatc
acagaagcaggaagatgtgacatacctgttctactgaaggct

hash	value	for	template	1:	832589471

Example:	read1	-	gatgtgacatacctgttctactgaggct

MAQ*	uses	spaced	seeds	for	mapping

*Li	et	al	Genome	Res.	2008.	18:	1851-1858	

Build	six	hash	tables	(templates)	for	the	reads	(only	first	28	bp	
are	considered)	only	from	the	colored	nucleotides

HASH 2057673064
gatgtgacatacctgttctactgaggct 3178370917
gatgtgacatacctgttctactgaggct 773088662
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct
gatgtgacatacctgttctactgaggct

1856750201
2510061809
119777054

compute	hash	values	for	spaced	seeds	in	
reference	(on	both	strands	and	for	one	of	
the	six	templates)	and	perform	lookups	in	
hash	tables	of	the	reads

6	‘Templates’

MAQ	uses	seed	pairs	as	it	allows	per	default	up	to	2	mismatches	between	seed	and	
reference.	As	each	28	mere	is	represented	by	4	non-overlapping	seeds,	we	are	
guaranteed	that	we	always	have	at	least	2	seeds	that	must	result	in	a	perfect	match	
to	the	reference.

Reference
AGACTGAGGTACGTAGACCATGATCGATACCCAAAAAGCTAGA

GTACGTAGACGATGATCCATACCCAAAA

Read	(28	bp	prefix)

Why	does	MAQ*	use	spaced	seeds	for	mapping?

1. At	the	alignment	stage,	MAQ	first	searches	for	the	ungapped	match	with	lowest	mismatch	
score,	defined	as	the	sum	of	qualities	at	mismatching	bases.		

2. MAQ	only	considers	positions	that	have	two	or	fewer	mismatches	in	the	first	28	bp	
(default	parameters;	speed-up).		

3. Sequences	that	fail	to	reach	a	mismatch	score	threshold	but	whose	mate	pair	is	mapped	
are	searched	with	a	gapped	alignment	algorithm	in	the	regions	defined	by	the	mate	pair.		

4. To	evaluate	the	reliability	of	alignments,	MAQ	assigns	each	individual	alignment	a	phred-
scaled	quality	score	(capped	at	99),	which	measures	the	probability	that	the	true	
alignment	is	not	the	one	found	by	MAQ.		

5. MAQ	always	reports	a	single	alignment,	and	if	a	read	can	be	aligned	equally	well	to	
multiple	positions,	MAQ	will	randomly	pick	one	position	and	give	it	a	mapping	quality	
zero.	Because	their	mapping	score	is	set	to	zero,	reads	that	are	mapped	equally	well	to	
multiple	positions	will	not	contribute	to	variant	calling.		

MAQ:	An	overview

The	“new	way”:	Burrows-Wheeler	Transform

• Invented	by	David	Wheeler	in	1983	(bell	labs),	pub.	
1994	

• Used	in	data	compression	(bzip2)	

• Used	in	2003	on	the	human	genome	to	define	exact	
word	matches	(originally	for	microarray	probe	design)	

• First	used	for	short	read	alignment	by	bowtie,	now	
adopted	by	bwa	(maq	author)	and	SOAP2

BWT(S)

Sa c a a c g

The	Burrows-Wheeler	Transform

a c a a c g $
c a a c g $ a
a a c g $ a c
a c g $ a c a
c g $ a c a a
g $ a c a a c
$ a c a a c g

$

sort	
lexicographically

$ a c a a c g
a a c g $ a c
a c a a c g $
a c g $ a c a
c a a c g $ a
c g $ a c a a
g $ a c a a c

Burrows	Wheeler	Transform	(BWT)

Generate	matrix	by	
1. Appending	a	$	to	the	end	of	the	string	

S	that	should	be	indexed.	$	should	
have	2	properties	
1. it	must	not	occur	in	the	string	
2. it	should	be	lexicographically	

smaller	than	any	character	in	S	
2. generate	all	cyclic	permutations	of	S	
3. sort	the	resulting	matrix	

lexicographically	(the	line	beginning	
with	the	$	is	the	first	to	occur	in	the	
matrix.	

BWT(S)
1st

1st

The	matrix	has	the	property	of	last	first	(LF)	mapping:	The	ith	
occurrence	of	character	X	in	the	last	column	corresponds	to	the	
same	text	character	as	the	ith	occurrence	of	X	in	the	first	column		

Burrows	Wheeler	Transform	(BWT)

The	matrix	has	the	property	of	
last	first	(LF)	mapping:	This	can	be	
used	to	reconstruct	the	original	
text	from	BWT(S)	using	the	
UNPERMUTE	algorithm.	

BWT(S)
1st

1st

Burrows	Wheeler	Transform	(BWT)

BWT(S)

The	matrix	has	the	property	of	last	first	(LF)	mapping:	This	can	be	used	to	
search	for	a	text	within	BWT(S)	using	the	EXACTMATCH	algorithm.	
Key	aspects:	
1) Matrix	is	sorted	lexicographically.	Thus,	rows	beginning	with	a	given	

sequence	appear	consecutively.	
2) 	EXACTMATCH	algorithm	calculates	the	range	of	matrix	rows	beginning	with	

successively	longer	suffixes	of	the	query.	
3) At	each	step,	the	size	of	the	range	either	shrinks	or	remains	the	same.		
4) When	the	algorithm	completes,	rows	beginning	with	S0	(the	entire	query)	

correspond	to	exact	occurrences	of	the	query	in	the	text.		

How	to	cope	with	mismatches?	  
Query	GGTA

Ranges	of	the	matrix	
rows	beginning	with	
the	suffix	observed	to	
that	point.

Empty	range:		
Abort	or	backtrack.

Bowtie	conducts	a	quality-aware,	greedy,	randomized,	depth-
first	search	through	the	space	of	possible	alignments.	

1. The	search	proceeds	similarly	to	
EXACTMATCH	

2. If	range	becomes	empty	(suffix	does	not	
occur	in	text),	the	algorithm	backtracks	
and	selects	an	already-matched	query	
position	and	substitutes	a	different	base	
there.	The	EXACTMATCH	algorithm	
resumes	from	this	modified	position.	

3. The	algorithm	allows	only	substitutions	
that	yield	a	modified	suffix	that	occurs	at	
least	once	in	the	text.	If	there	are	multiple	
candidate	substitution	positions,	then	the	
algorithm	greedily	selects	a	position	with	a	
minimal	quality	value.		

4. Because	search	is	greedy,	the	first	valid	
alignment	is	not	necessarily	the	best	
(Number	of	mismatches	and	quality).	
Bowtie	has	parameters	to	cope	with	this	(--
best	or	–all	(all	alignments).	

5. Excessive	Backtracking	should	be	avoided.	
Note,	we	start	from	the	low	quality	end...

(abort)

(backtrack)

Avoidance	of	excessive	backtracking	(assuming	1	mismatch)

Problem:	The	aligner	spends	most	of	its	effort	fruitlessly	backtracking	to	positions	
close	to	the	3'	end	of	the	query	(error	prone).		

Solution	Part1:	double	indexing	(similar	to	MAQ),	using	two	indices	for	the	genome	
• Index	1:	BWT	of	the	original	genome	
• Index	2:	BWT	of	the	genome	with	reversed	character	order	(not	reverse	

complemented!)	
Solution	Part2:	The	aligner	is	invoked	twice	
• First	round:	Index	1	is	used,	and	the	aligner	is	started	with	original	read	with	the	

constraint	that	it	must	not		substitute	a	position	in	the	query’s	right	half	(3’	end).	
• Second	round:	Index	2	is	used,	and	the	aligner	is	started	with	the	reversed	read,	

again	with	the	constraint	that	it	must	not	substitute	a	position	in	the	reversed	
query’s	right	half	(originally	and	still	the	5’	end).	

Solution	Part3:	set	a	hard	upper	limit	of	backtracks	to	be	performed.

5’ 3’
5’ 3’

Reference

exactsubstitute

3’ 5’
Reference

3’ 5’exactsubstitute

The	three	phases	of	Bowtie

In	the	case	of	2	(or	more	mismatches):	
• Bowtie	uses	the	first	28	bp	as	seed	
• The	seed	is	split	into	a	high	quality	5’	

half	(hi-half)	and	a	low	quality	3’	half	(lo-
half)	

• For	up	to	2	mismatches	we	have	four	
scenarios:	
1. no	mismatches	in	seed	
2. 1-2	mismatches	only	in	the	lo-half	
3. 1-2	mismatches	only	in	the	hi-half	
4. 1	mismatch	each	in	hi-	and	low-

half	
• Any	number	of	mismatches	can	occur	in	

non-seed	part	(subject	to	other	
thresholds).

se
ed
	a
nd
	fu

ll	
re
ad

se
ed

m
ap
	fu

ll	
re
ad

seed	&	

full	read

SAM/BAM	format*	&	SAMtools

• Sequence	Alignment/Map	&	Binary	Alignment/Map	(Heng	Li,	et	al)	

• SAMtools	-	C	or	Java	
– convert	formats	
– sort/merge	alignments	
– generate	per-position	information	
– call	SNPs/indel	variants	
– show	alignments	in	a	text	viewer	
– http://bioinformatics.oxfordjournals.org/cgi/reprint/btp352v1

V00-HWI-EAS132:3:38:959:2035#0 147 chr1 28 255 36M = 79 0 GATCTGATGGCAGAAAACCCCTCTCAGTCCGTCGTG aaX`[\`Y^Y^]ZX``\EV_BBBBBBBBBBBBBBBB NM:i:1
V00-HWI-EAS132:4:99:122:772#0 177 chr1 32 255 36M = 9127 0 AAAGGATCTGATGGCAGAAAACCCCTCTCAGTCCGT aaaaaa\OWaI_\WL\aa`Xa^]\ZUaa[XWT\^XR NM:i:1
V00-HWI-EAS132:4:44:473:970#0 25 chr1 40 255 36M * 0 0 GTCGTGGTGAAGGATCTGATGGCAGAAAACACCTCT __YaZ`W[aZNUZ[U[_TL[KVVX^QURUTDRVZBB NM:i:2
V00-HWI-EAS132:4:29:113:1934#0 99 chr1 44 255 36M = 107 0 GGGTTTTCTGCCATCAGATCCTTTACCACGACAGAC aaaQaa__``]_^``^a^`a`_^^^_XQ[ZS\XX NM:i:1

Query	Name Ref	sequence

position	of	alignment

query	sequence	(same	strand	as	ref) query	quality

@HD VN:1.0
@SQ SN:chr20 AS:HG18 LN:62435964
@RG ID:L1 PU:SC_1_10 LB:SC_1 SM:NA12891
@RG ID:L2 PU:SC_2_12 LB:SC_2 SM:NA12891

Header	section

Alignment	section

*for	details	on	the	format	see	http://samtools.sourceforge.net/SAM1.pdf

http://bioinformatics.oxfordjournals.org/cgi/reprint/btp352v1

Data	visualization	using	Tablet

39
Milne	et	al.	Brief	Bioinform	(2013)	14	(2):	193-202.

http://bib.oxfordjournals.org/content/14/2/193

• Up	to	2	mismatches	in	first	28	bases	reported	by	default	(Maq,	Bowtie,	BWA).	
Maq	additionally	reports	some	3-mismatches.	

• If	>=1	exact	matches	exist	for	a	read,	Bowtie	will	report	one	of	them.	If	the	best	
match	is	inexact,	bowtie	will	not	always	return	the	highest	quality	alignment	
(unless	run	with	--best).	

• Bowtie,	BWA,	and	SOAP2	all	randomly	place	repeat	reads.	

• Although	in	theory	BWA	works	with	arbitrarily	long	reads,its	performance	is	
degraded	on	long	reads	(probably	with	any	BWT	aligner).	Consider	using	Bowtie2.	

• Non-ACTG	bases	in	the	genome	are	converted	to	random	bases	in	BWA	

• How	does	the	mapper	deal	with	paired	end	reads?	Will	it	report	a	mapping	
success	only	when	both	reads	map	in	the	correct	distance	(specify	insert	size)	and	
orientation?

Mapping:	Watch	out	for	the	following…

