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Basically,	we	have	three	different	means	to	
reconstruct	phylogenetic	trees	from	sequence	data

Find	tree	that	
requires	the	least	
number	of	changes

Find	the	tree	
that	most	likely	
gave	rise	to	the	

data

Reconstruct	the	best	fitting	tree	from	a	pair-wise	distance	matrix1

1	see	Grundlagen	der	Bioinformatik,	Lecture	12
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1 CCG

2 GGC

3 CCC

4 CCC

For	an	alignment	of	four	sequences	
and	length	m=3	the	likelihood	is	
then1 2

5 3 4

6

CCG GGC

CCC CCC
0.1 0.1

0.1

0.1

0.1

0.005331
0.005331
0.005331

L(T) = L(k)
k=1

m

∏ = 0.0053312 ×0.005331

= 0.000000152

lnL(T) = lnL(k) = −15.7
k=1

m
∑

or	the	log-likelihood	is

Calculating	tree	likelihoods
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Now	that	we	know	how	to	evaluate	the	likelihood	of	any	given	
tree,	we	need	to	ask	how	to	find	the	ML	tree

Heuristic	tree	search	begins	with	an	initial	sub-optimal	solution	(starting	tree) 
obtained	either	via	step-wise	addition	(or	using	a	distance	tree)	
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Again	we	have	an	iterative	stochastic	process	as	we	have	seen	in	the	alignment	case

Finding	the	best	tree	  
Evaluate	random	rearrangements	of	the	starting	tree	and	accept	 
new	tree	if	it	improves	P(D|M,T).	Continue	until	convergence.

our goal!
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Resampling	methods	for	assessing	the	support	of	a 
(ML1)	tree	given	the	data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Rationale:	All	positions	in	a	sequence,	and	hence	all	alignment	columns,	should	have	the	same	
evolutionary	history.	Thus,	we	can	summarize	the	phylogenetic	information	in	a	single	tree.	

S1

S2

S3

S4

1	works	of	course	for	maximum	parsimony	and	distance	trees	as	well.
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Resampling	methods	for	assessing	the	support	of	a	tree	
given	the	data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Rationale:	All	positions	in	a	sequence,	and	hence	all	alignment	columns,	should	have	the	same	
evolutionary	history.	Thus,	it	should	in	principle	not	matter	which	subset	of	the	data	I	am	using	
for	tree	reconstruction	if	the	phylogenetic	signal	is	sufficiently	strong	and	indeed	consistent.	

S1

S2

S3

S4
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Resampling	methods	for	assessing	the	support	of	a	tree	
given	the	data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Rationale:	All	positions	in	a	sequence,	and	hence	all	alignment	columns,	should	have	the	same	
evolutionary	history.	Thus,	it	should	in	principle	not	matter	which	subset	of	the	data	I	am	using	
for	tree	reconstruction	if	the	phylogenetic	signal	is	sufficiently	strong	and	indeed	consistent.	

S1

S2

S3

S4
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Resampling	methods	for	assessing	the	support	of	a	tree	
given	the	data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Rationale:	All	positions	in	a	sequence,	and	hence	all	alignment	columns,	should	have	the	same	
evolutionary	history.	Thus,	it	should	in	principle	not	matter	which	subset	of	the	data	I	am	using	
for	tree	reconstruction	if	the	phylogenetic	signal	is	sufficiently	strong	and	indeed	consistent.	

S1

S2

S3

S4
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Resampling	methods	for	assessing	the	support	of	a	tree	
given	the	data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Rationale:	All	positions	in	a	sequence,	and	hence	all	alignment	columns,	should	have	the	same	
evolutionary	history.	Thus,	it	should	in	principle	not	matter	which	subset	of	the	data	I	am	using	
for	tree	reconstruction	if	the	phylogenetic	signal	is	sufficiently	strong	and	indeed	consistent.	

S1

S4

S3

S2
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Resampling	methods	for	assessing	the	support	of	a	tree	
given	the	data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Rationale:	All	positions	in	a	sequence,	and	hence	all	alignment	columns,	should	have	the	same	
evolutionary	history.	Thus,	it	should	in	principle	not	matter	which	subset	of	the	data	I	am	using	
for	tree	reconstruction	if	the	phylogenetic	signal	is	sufficiently	strong	and	indeed	consistent.	
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Resampling	methods	for	assessing	the	support	of	a	tree	
given	the	data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Observation:	The	phylogenetic	signal	in	the	data	is	apparently	not	entirely	consistent	and	we	
would	like	to	have	a	method	to	assess	the	extent	of	variability.

S1

S4

S3

S2

S1

S2

S3

S4

6	x 1	x

S1

S2

S3

S4

2	x
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Resampling	methods	for	assessing	the	support	of	a	tree	
given	the	data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Approach	1	–	Jackknife:	Remove	a	random	subset	of	alignment	columns	and	re-compute	the	
tree.	Typically	a	50%	Jackknife	analysis	is	performed.		

S1

S4

S3

S2
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Resampling	methods	for	assessing	the	support	of	a	tree	
given	the	data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Approach	1	–	Jackknife:	Remove	a	random	subset	of	alignment	columns	and	re-compute	the	
tree.	Typically	a	50%	Jackknife	analysis	is	performed.		

S1

S2

S3

S4
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Resampling	methods	for	assessing	the	support	of	a	tree	
given	the	data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Approach	1	–	Jackknife:	Remove	a	random	subset	of	alignment	columns	and	re-compute	the	
tree.	Typically	a	50%	Jackknife	analysis	is	performed.		

S1

S2

S3

S4
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S1

S4

S3

S2

S1

S2

S3

S4

Resampling	methods	for	assessing	the	support	of	a	tree	
given	the	data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Approach	1	–	Jackknife:	Remove	a	random	subset	of	alignment	columns	and	
re-compute	the	tree.	Typically	a	50%	Jackknife	analysis	is	performed.		

S1

S2

S3

S4

repeat	
n*	times

*n	is	typically	100	or	1000

JN1

JN99

JN100

S1

S2

S3

S4

76**

**value	is	typically	given	in	percent
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Resampling	methods	for	assessing	the	support	of	a	tree	
given	the	data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Approach	2	–	Bootstrap:	Resample	randomly	chosen	columns	from	the	
original	alignment	(with	replacement)	to	obtain	a	new	alignment	with	the	
same	length	as	the	original	alignment.

repeat	
n*	times

Taxon 1 1 4 4 7 7 1 5 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Taxon 7 7 9 8 5 6 7 1 2

S1 G G T T C T G C G

S2 C C T T C T C C G

S3 G G T C C T G T G

S4 G G T C C T G C G

Taxon 4 4 4 4 4 4 4 4 4

S1 G G G G G G G G G

S2 A A A A A A A A A

S3 A A A A A A A A A

S4 G G G G G G G G G

Taxon 6 5 2 9 6 1 6 8 9

S1 T C G T T C T T T

S2 T C G T T C T T T

S3 T C G T T T T C T

S4 T C G T T C T C T

*n	is	typically	100	or	1000
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Resampling	methods	for	assessing	the	support	of	a	tree	
given	the	data

Taxon 1 2 3 4 5 6 7 8 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Approach	2	–	Bootstrap:	Resample	randomly	chosen	columns	from	the	
original	alignment	(with	replacement)	to	obtain	a	new	alignment	with	the	
same	length	as	the	original	alignment.

repeat	
n*	times

Taxon 1 1 4 4 7 7 1 5 9

S1 C G C G C T G T T

S2 C G C A C T C T T

S3 T G A A C T G C T

S4 C G A G C T G C T

Taxon 7 7 9 8 5 6 7 1 2

S1 G G T T C T G C G

S2 C C T T C T C C G

S3 G G T C C T G T G

S4 G G T C C T G C G

S1

S4

S3

S2

S1

S2

S3

S4

S1

S2

S3

S4BS1

BS99

BS100

S1

S2

S3

S4

89**

*n	is	typically	100	or	1000 **value	is	typically	given	in	percent
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1. Exhaustive	Search:	evaluates	every	possible	tree	and	hence	an	optimal	
solution	is	guaranteed.	Limit:	10-12	taxa	

2. Branch	and	Bound:	excludes	parts	from	the	tree	space	from	the	search	
where	the	optimal	tree	cannot	be	found.	Guarantees	to	find	the	
optimal	tree.		

3. Heuristics:	Can	be	applied	to	large	taxon	sets	but	does	not	guarantee	
an	optimal	solution

Maximum	Parsimony	and	Maximum	Likelihood	only	evaluate	trees	and	do	
not	reconstruct	them!	 

Finding	the	best	tree	is	highly	problematic!
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Again	we	have	an	iterative	stochastic	process	as	we	have	seen	in	the	alignment	case

Finding	the	best	tree	  
Evaluate	random	rearrangements	of	the	starting	tree	and	accept	 
new	tree	if	it	improves	P(D|M,T).	Continue	until	convergence.

our goal!
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Tree	rearrangements	in	RAxML*

Stamatakis	et	al.	2008	Syst	Biol	57:758-771
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Modeling	rate	across	sites  
(Substitution	rate	heterogeneity	across	sites)
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Modeling	rate	across	sites  
Revisiting	substitution	models

€ 

Q=

− a b c
a − d e
b d − f
c e f −

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

A C G T It	is	a	convention	to	
set	the	diagonal	
entries	qii	such	that	
the	rows	sum	up	to	
0.	Thus,		

qii = − qij
j≠i
∑

However,	this	model		assumes	that	all	sites	in	a	sequence,	
or	all	columns	in	an	alignment	evolve	with	the	same	
relative	rate.	Note,	that	we	can	rewrite	the	total	rate	for	a	
given	position	as

qi = qij
j≠i
∑

We	can	now	introduce	a	neutral	parameter	r=1	such	that	
can	re-write	qi	as	qi*r
For	a	sequence	of	L	characters	we	have	now	the	possibility	
to	give	the	parameter	r	for	l=1…L	a	site	specific	value	rl.

We	re-scale	the	substitution	rate	in	
a	site-specific	manner,	i.e.	the	
substitution	rate	at	a	position	l	is	
qirl
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Modeling	rate	across	sites  
Common	approaches

Continuous	Gamma	distribution	with	a	mean	of	1*.	Note	
that	the	parameter	α	determines	the	shape	of	the	
distribution.		
(Problem	of	over-parameterization	and	over-fitting)

*Thus,	if	I	choose	randomly	from	this	distribution,	the	overall	rate	will	not	change!;	**Z.	Yang	(1994)	J	Mol	Evol	39:306

**



24

Modeling	rate	across	sites  
Common	approaches

Continuous	Gamma	distribution	with	a	mean	of	1*.	Note	
that	the	parameter	α	determines	the	shape	of	the	
distribution.		
(Problem	of	over-parameterization	and	over-fitting)

*Thus,	if	I	choose	randomly	from	this	distribution,	the	overall	rate	will	not	change!;	**Z.	Yang	(1994)	J	Mol	Evol	39:306

**

Likelihood	based	tree	reconstruction	methods	assign	each	position	in	the	alignment	
either	its	own	relative	rate	(Gamma	model)	or	assigns	it	to	a	given	rate	category.	In	the	
latter	case	you	are	asked	how	many	rate	categories	you	want	to	use	(values	range	
typically	between	4	and	12).	
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Looking	at	trees	via	their	splits

Each	branch	of	a	tree	describes	a	split	of	OTUs	into	two	sets	

These	sets	correspond	to	the	two	clades	associated	with	the	branch	

e.g.	black	branch	of	the	tree	specifies	the	split	ABCD	|	EFG	

•can	also	be	written	ADCB	|	GFE	etc.	
•i.e.	the	taxon	lists	in	the	two	halves	of	the	split	are	unordered
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Looking	at	trees	via	their	splits

Splits	are	either	

trivial	
•example:	F	|	ABCDEG	
•associated	with	terminal	branches	
•provide	no	information	about	topology	structure	

non-trivial	
•example:		ABCD	|	EFG	
•associated	with	internal	branches	
•provide	information	about	the	tree	topology



27

Looking	at	trees	via	their	splits

Complete	list	of	splits	described	by	a	tree	allows	reconstruction	of	that	tree’s	topology

D

F

DF | ABCEGHA

E

BCDFGH | AE
ABEGH | CDF

C

BH | ACDEFGB H

G

Helps	to	consider	the	sets	of	clades	described	by	the	splits
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Split	Compatibility

Sets	(e.g.	pairs)	of	splits	are	either:	
compatible	
•a	tree	can	be	drawn	that	contains	all	splits	in	the	set	
incompatible	
•a	tree	cannot	be	drawn	that	contains	all	splits	in	the	set

Definition:	Two	splits	W|X	and	Y|Z	are	compatible,	i.e.	not	contradictory,	if	at	least	
one	intersection	of	W	∩	Y	,		
W	∩	Z	,	X	∩	Y	,	X	∩	Z	is	empty.	
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Sets	of	trees	can	be	summarized	by	looking	at	their	split	sets:	 
Strict	Consensus	Trees

i ii iii iv v vi vii vii
i

AB | CDEF * * * * * * * * 8

CD | ABEF * * 2

EF | ABCD * * * * * 5

ABC | DEF * * 2

DE | ABCF * 1

CF | ABED * * 2

ABD | ECF * * * 3

ABF | CDE * 1

A

B

C

D

E

F

(i)
A

B

C D

E

F

(ii)

A

B

D

E

C

F

(vi)
A

B

E D

C

F

(vii)

(iii)
A

B

C

D

E

F

(v)A

B

D

C

E

F

A

B

F

E

C

D

(iv)

A

B

D

C

E

F(viii)

A B

C
D

F E
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Sets	of	trees	can	be	summarized	by	looking	at	their	split	sets: 
50%	Majority	Rule	Consensus	Trees

i ii iii iv v vi vii vii
i

AB | CDEF * * * * * * * * 8

CD | ABEF * * 2

EF | ABCD * * * * * 5

ABC | DEF * * 2

DE | ABCF * 1

CF | ABED * * 2

ABD | ECF * * * 3

ABF | CDE * 1

A

B

C

D

E

F

(i)
A

B

C D

E

F

(ii)

A

B

D

E

C

F

(vi)
A

B

E D

C

F

(vii)

(iii)
A

B

C

D

E

F

(v)A

B

D

C

E

F

A

B

F

E

C

D

(iv)

A

B

D

C

E

F(viii)

A B

C
D

F E

5

8
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Label	the	Branches!

Resolving	an	ancient,	rapid	radiation	in	Saxifragales.	
Jian	S,	Soltis	PS,	Gitzendanner	MA,	Moore	MJ,	Li	R,	Hendry	TA,	Qiu	YL,	Dhingra	A,	Bell	CD,	Soltis	DE.	
Syst	Biol.	2008	Feb;57(1):38-57.	
PMID:	18275001

Branches	of	
consensus	tree	
labeled	to	indicate	
proportion	of	trees	
containing	that	
branch/split

http://www.ncbi.nlm.nih.gov/pubmed/18275001?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum

