
Whole	genome	shotgun	sequencing	
DeNovo	Assembly

2

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing

Template	DNA

1. Randomly	break	template	DNA	into	pieces

3

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing

Template	DNA

1. Randomly	break	template	DNA	into	pieces

4

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	and	size	select

5

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing 
Sometimes	adapter	sequences	remain!

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments	

Identifying	these	sequences	is	simple	when	we	ignore	the	complexity	of	the	search

The	problem	is,	what	sequence(s)	are	we	looking	for?

6

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing 
Sometimes	adapter	sequences	remain!

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments	

Identifying	these	sequences	is	simple	when	we	ignore	the	complexity	of	the	search

Clip	adapter	sequences

7

Strategies	to	sequence	long	DNA	molecules:	Shotgun	Sequencing

Read	Pair	1
Read	Pair	2
Read	Pair	3
Read	Pair	4
Read	Pair	5
Read	Pair	6
Read	Pair	7
Read	Pair	8
Read	Pair	9
Read	Pair	10
Read	Pair	11

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments		
4. Identify	and	remove	adapter	part	from	the	determined	sequences	
5. Reconstruct	template	sequence	from	the	sequence	reads

Reconstruct	template

8

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments		
4. Remove	adapter	part	from	the	determined	sequences	
5. Reconstruct	template	sequence	from	the	sequence	reads	

1. Reference	guided	sequence	assembly:	map	reads	to	a	reference	sequence	
2. De-novo	sequence	assembly:	determine	overlap	between	sequence	reads	and	assemble	

overlapping	sequences	into	contigs.

Contig	1 Contig	2 Contig	3

collapse

collapse

collapse

Strategies	to	sequence	long	DNA	molecules:	Shotgun	sequencing	
and	de-novo	assembly	of	the	sequence	reads

9

Read	Pair	11Read	Pair	2

Read	Pair	5

Contig	1 Contig	2 Contig	3

Scaffold	1
NN

1. Randomly	break	template	DNA	into	pieces	
2. Add	adapters	of	known	sequence	to	the	fragment	ends	
3. Sequence	(typically)	the	ends	of	the	fragments		
4. Remove	adapter	part	from	the	determined	sequences	
5. Reconstruct	template	sequence	from	the	sequence	reads	

1. Reference	guided	sequence	assembly:	map	reads	to	a	reference	sequence	
2. De-novo	sequence	assembly:	determine	overlap	between	sequence	reads	and	assemble	

overlapping	sequences	into	contigs.	Mate	pair	information	can	then	be	used	to	build	
super-contigs	(scaffolds)	from	physically	non-overlapping	contigs.

Scaffold	2
NNNN NN

Strategies	to	sequence	long	DNA	molecules:	Shotgun	sequencing	
and	de-novo	assembly	of	the	sequence	reads

10

1. Coverage:	The	average	number	of	reads	covering	a	position	in	the	sequenced	template	DNA.		
Length	of	genomic	segment:		L	
Number	of	reads:																				n									Coverage		 C	=	n	l	/	L	
Length	of	each	read:															l	

How	much	coverage	is	enough?	
Lander-Waterman	model:	
	 Assuming	uniform	distribution	of	reads,	C=10	results	in	1	gapped	region	per	1,000,000	
nucleotides	->	This	is	no	more	than	a	crude	rule	of	thumb	and	greatly	depends	on	read	length,	
repeat	composition	of	the	template	DNA,	etc.

Contig	1 Contig	2 Contig	3

collapse

collapse

collapse

Strategies	to	sequence	long	DNA	molecules:	Shotgun	sequencing	
and	de-novo	assembly	of	the	sequence	reads	
Some	summary	statistics	to	describe	assemblies

The	higher	the	coverage	the	better	(provided	unlimited	computational	resources)!	
The	more	uniform	the	coverage	distribution	the	better!	

11

2. N50-size:	More	than	50%	of	the	bases	in	your	assembly	reside	in	contigs	with	at	least	the	size	
determined	by	the	N50	value.		NOTE:	You	can	of	course	specify	any	other	N-value.	

Contig	1 Contig	2 Contig	3

collapse

collapse

collapse

Strategies	to	sequence	long	DNA	molecules:	Shotgun	sequencing	
and	de-novo	assembly	of	the	sequence	reads	
Some	summary	statistics	to	describe	assemblies

What	now	tells	us	the	N50	size	exactly?	
Is	it	a	quality	measure	as	people	frequently	use	it?	

When	does	it	make	sense	to	mention	the	N50	size	(just	consider	RNAseq	assemblies)?

12

3. Contig	length	distribution

Contig	1 Contig	2 Contig	3

collapse

collapse

collapse

Strategies	to	sequence	long	DNA	molecules:	Shotgun	sequencing	
and	de-novo	assembly	of	the	sequence	reads	
Some	summary	statistics	to	describe	assemblies

Note:	All	these	statistics	can	be	used	for	scaffolds	as	well!

Literature	on	de-novo	assemblies	

• J.R.	Miller	et	al.	Genomics	95	(2010)	315–327	
• P.	Compeau	et	al.	Nature	Biotechnology	29	
(2011)	987-991	

• Zerbino	and	Birney.	Genome	Res	18	(2008)	
821-829	Velvet	

DeNovo	Assembly

The	assembly	problem…

JLFB

JLFB

Overlap-Layout-Approach	
Assemblers:	ARACHNE,	PHRAP,	CAP,	TIGR,	CELERA,	MIRA

Overlap:		find	potentially	overlapping	reads

Layout:		merge	reads	into	contigs	and																				
															contigs	into	supercontigs

Consensus:		derive	the	DNA	sequence	and	
correct	read	errors ..ACGATTACAATAGGTT..

Overlap

• Find	the	best	match	between	the	suffix	of	one	
read	and	the	prefix	of	another	

• Due	to	sequencing	errors,	need	to	use	dynamic	
programming	to	find	the	optimal	overlap	
alignment	

• Apply	a	filter	to	remove	pairs	of	fragments	that	
do	not	share	a	significantly	long	common	
substring

Different	approaches	to	the	sequence	assembly	
problem

modfied	from	Compeau	et	al.	(2011)	Nature	Biotechnology	29(11)

Overlap	based	assembly	
➢ read	identity	is	maintained	
➢ intuitive	
➢ Reads	can	be	organised	in	an	overlap	graph	
➢ Graph	complexity	increases	with	coverage,	

thus	read	redundancy	inflates	the	graph	

Word-based	approaches	
➢ read	identity	is	(temporarily)	

lost…	
➢ Reads	are	organised	in	deBruijn	

graphs	
➢ Graph	complexity	depends	on	

word	size	
➢ Graph	complexity	is	(by	and	

large)	independent	from	
coverage,	read	redundancy	is	
naturally	handled	

➢ repeats	are	represented	only	
once	in	the	graph	with	explicit	
links	to	the	different	start	and	
end	points	

De-Novo	Sequence	Assembly:  
CAP3

18

Shotgun	Sequence	Reads

1
2
3
4
5
6
7

De-Novo	Sequence	Assembly:  
CAP3

19

Shotgun	Sequence	Reads

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.

1
2
3
4
5
6
7

1 2 3 4 5 6 7

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments

20

Shotgun	Sequence	Reads

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

2
3
4
5
6
7

1 2 3 4 5 6 7

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments

21

Shotgun	Sequence	Reads

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

1

2
3
4
5
6
7

1 2 3 4 5 6 7

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments

22

Shotgun	Sequence	Reads

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

1

2
3
4
5
6
7

1 2 3 4 5 6 7

Remove	the	trivial	solution	(alignment	against	itself)

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments

23

Shotgun	Sequence	Reads

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

2
3
4
5
6
7

1 2 3 4 5 6 7

Remove	the	trivial	solution	(alignment	against	itself)

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments

24

Shotgun	Sequence	Reads

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

1

2
3
4
5
6
7

1 2 3 4 5 6 7

1

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments

25

Shotgun	Sequence	Reads

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

1

2
3
4
5
6
7

1 2 3 4 5 6 7

1

1

3 5

1
Candidate	pairs	for	read	1:

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments

26

Shotgun	Sequence	Reads

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

3
4
5
6
7

1

3 5

1
Candidate	pairs	for	read	1:

2

1 2 3 4 5 6 7

2

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments

27

Shotgun	Sequence	Reads

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

23
4
5
6
7

1 2 3 4 5 6 7

2

1

3 5

1
Candidate	pairs	for	read	1:

6

2
Candidate	pairs	for	read	2:

2

3

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments

28

Shotgun	Sequence	Reads

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

4
5
6
7

1 2 3 4 5 6 7

1

3 5

1
Candidate	pairs	for	read	1:

6

2
Candidate	pairs	for	read	2:

Candidate	pairs	for	read	3:

3

6

3

3

7

3

2

3

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments

29

Shotgun	Sequence	Reads

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

4
5
6
7

1 2 3 4 5 6 7

1

3 5

1
Candidate	pairs	for	read	1:

6

2
Candidate	pairs	for	read	2:

Candidate	pairs	for	read	3:
6

3

7

3

Candidate	pairs	for	read	7:

.	

.	

.

2

3

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments:	post-processing

30

1

3

5

1

6

2

6

3

7

3

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

3. Remove	poor	quality	sequence	ends	

4. Compute	global	alignment	for	the	high	quality	sequence	pairs	to	verify	overlaps.		

2

3

4

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments:	post-processing

31

1

3

5

1

6

2

6

3

7

3

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

3. Remove	poor	quality	sequence	ends	

4. Compute	global	alignment	for	the	high	quality	sequence	pairs	to	verify	overlaps.	Evaluate	according	to	
the	following	criteria:	
1. minimum	length	
2. minimum	identity	
3. minimum	similarity	
4. number	of	high-quality	mismatches	

	 Remove	sequence	pairs	that	do	not	meet	the	thresholds	for	4.1	to	4.4	

4

2

3

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments:	post-processing

32

1

3

5

1

6

2

6

3

7

3

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

3. Remove	poor	quality	sequence	ends	

4. Compute	global	alignment	for	the	high	quality	sequence	pairs	to	verify	overlaps.	Evaluate	according	to	
the	following	criteria:	
1. minimum	length	
2. minimum	identity	
3. minimum	similarity	
4. number	of	high-quality	mismatches	

	 Remove	sequence	pairs	that	do	not	meet	the	thresholds	for	4.1	to	4.4	

4

2

3

De-Novo	Sequence	Assembly	(CAP3)  
Search	for	local	alignments:	post-processing

33

1

3

5

1

6

2

6

3

7

1. Concatenate	sequences	into	a	combined	sequence.	Reads	are	separated	by	a	separation	character.	

2. Compute	high	scoring	chains	of	segments	between	each	read	and	the	combined	sequence	using	local	
alignment	search	tools.	Identify	candidate	pairs.	Every	pair	is	counted	only	once.	

3. Remove	poor	quality	sequence	ends	

4. Compute	global	alignment	for	the	high	quality	sequence	pairs	to	verify	overlaps.	Evaluate	according	to	
the	following	criteria:	
1. minimum	length	
2. minimum	identity	
3. minimum	similarity	
4. number	of	high-quality	mismatches	

	 Remove	sequence	pairs	that	do	not	meet	the	thresholds	for	4.1	to	4.4	

4

2

3

1

3

1
6

2

6

3

2

3

CAP3:	Contig	Building

5

4 7

34

5

1
6

2

6

3

CAP3:	Contig	Building

1

3

2

4 7

35

5

1
6

2

6

CAP3:	Contig	Building

1

3

2

4 7

36

5

6

CAP3:	Contig	Building

1
3

2

6

2

4 7

37

5

6

CAP3:	Contig	Building

1
3

2
6

2

1) Generate	a	general	layout	using	the	overlapping	reads	from	the	pair-wise	

analysis	(Greedy	algorithm	in	decreasing	order	of	overlap	scores).	

2) In	a	simple	view:	Check	the	layout	for	incompatibilities.

4 7

38

5

6

CAP3:	Contig	Building

1
3

2
6

2

1) Generate	a	general	layout	using	the	overlapping	reads	from	the	pair-wise	

analysis	(Greedy	algorithm	in	decreasing	order	of	overlap	scores).	

2) In	a	simple	view:	Check	the	layout	for	incompatibilities.	

1) sequence	read	1	and	2	are	incompatible	since	they	could	not	be	

aligned.

4 7

39

5

6

CAP3:	Contig	Building

1
3

6

2

1) Generate	a	general	layout	using	the	overlapping	reads	from	the	pair-wise	

analysis	(Greedy	algorithm	in	decreasing	order	of	overlap	scores).	

2) In	a	simple	view:	Check	the	layout	for	incompatibilities.	

1) sequence	read	1	and	2	are	incompatible	since	they	could	not	be	

aligned.	

2) resolve	incompatibility	

3) check	for	new	possible	layouts	

4 7

40

5

6

CAP3:	Contig	Building

1
3 2

1) Generate	a	general	layout	using	the	overlapping	reads	from	the	pair-wise	

analysis	(Greedy	algorithm	in	decreasing	order	of	overlap	scores).	

2) In	a	simple	view:	Check	the	layout	for	incompatibilities.	

1) sequence	read	1	and	2	are	incompatible	since	they	could	not	be	

aligned.	

2) resolve	incompatibility	

3) check	for	new	possible	layouts	

4 7

41

5

6

Further	steps	in	genome	sequencing

1
3 2

1) Generate	a	general	layout	using	the	overlapping	reads	from	the	pair-wise	

analysis	(Greedy	algorithm	in	decreasing	order	of	overlap	scores).	

2) In	a	simple	view:	Check	the	layout	for	incompatibilities,	remove	

incompatible	reads	and	align.		

3) Build	a	consensus	sequence	for	each	contigs.	

4) Order	and	orient	contigs	if	possible	using	additional	information,	e.g.,	

paired	end	reads.		

4 7

42

Derive	Consensus	Sequence

Derive	multiple	alignment	from	pairwise	read	
alignments

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive each consensus base by weighted
voting

Error	correction	by	weighted	voting

• Correct	errors	using	multiple	alignment

TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA

C: 20
C: 35
T: 30
C: 35
C: 40

C: 20
C: 35
C: 0
C: 35
C: 40

• Score	alignments	
• Accept	alignments	with	good	scores	

A: 15
A: 25
A: 40
A: 25
-

A: 15
A: 25
A: 40
A: 25
A: 0

Consensus	(cont’d)
• A	consensus	sequence	is	derived	from	a	profile	of	the	

assembled	fragments	

• A	sufficient	number	of	reads	is	required	to	ensure	a	statistically	
significant	consensus	

• Reading	errors	are	corrected

Sequence	assembly	with	De	Bruijn	graphs

Sequence	assembly	can	be	abstracted	to	the	shortest	superstring	
problem  

(Nicolas	de	Bruijn	1946)

Problem:	find	the	shortest	(circular)	superstring	that	contains	all	possible	substrings	of	
length	K	over	a	given	alphabet.

for	K	=	4	and	a	two	letter	alphabet	A={0,1}	we	have	16	different	words:

0000,	0001,	0010,	0100,	1000,	0011,	0110,	1100,	1001,	1010,	0101,	0111,	1011,	1101,	1110,	1111

Sequence	assembly	can	be	abstracted	to	the	shortest	superstring	
problem  

(Nicolas	de	Bruijn	1946)

Problem:	find	the	shortest	(circular)	superstring	that	contains	all	possible	substrings	of	
length	K	over	a	given	alphabet.

for	K	=	4	and	a	two	letter	alphabet		A={0,1}	we	have	16	different	words:

0000,	0001,	0010,	0100,	1000,	0011,	0110,	1100,	1001,	1010,	0101,	0111,	1011,	1101,	1110,	1111

To	solve	this	problem,	de	Bruijn	borrowed	from	Euler	who	solved	1735	the	‘Königsberg’	
problem,	i.e.	the	question	whether	it	is	possible	to	visit	each	island	by	crossing	each	
bridge	exactly	once	(Eulerian	cycle)

Eulerian	Cycle	Problem

• Find	a	cycle	that	visits	every	edge	
exactly	once	(Linear	time)	

• An	Eulerian	Cycle	exists	if	the	number	
of	‘outgoing’	edges	for	a	node	equals	
the	number	of	‘incoming’	edges*.		

• The	graph	may	have	2	nodes	with	an	
odd	number	of	edges	connected	to	
it.	In	this	case	an	Eulerian	path	rather	
than	an	Eulerian	cycle	can	be	found.	

*Proof	by	C.	Hierholzer	

de	Bruijn	solved	the	problem	by	representing	K-1	mers	as	nodes	
and	K	mers	as	edges	in	a	directed	graph.

By	doing	so,	he	related	the	problem	of	finding	a	shortest	common	
superstring	to	the	already	solved	problem	of	finding	an	Eulerian	cycle	in	

a	graph.

001 011

100 110

000 010 101 111

0011

0010

0101

1011
1010

1101

0111

1111 1110

1100

1001
0001

1000
0000

0110

0100

I

II

III

IV

V

VI

VII

VIII

IX
X

XI

XII
XIII

XIV

XV

XVI

001 011

100 110

000 010 101 111

0011

0010

0101

1011
1010

1101

0111

1111 1110

1100

1001
0001

1000
0000

0110

0100

I

II

III

IV

V

VI

VII

VIII

IX
X

XI

XII
XIII

XIV

XV

XVI

Passing	through	the	edges	by	following	the	roman	numbers	
reconstructs	the	superstring	using	each	word	exactly	once!

I:	0000,	II:	0001,	III:	0011;	IV:	0110;	V:	1100;	VI:	1001;	VII:	0010;	VIII:	0101;	IX:	1011;	X:	0111;	XI:	1111;			
XII:	1110;	XIII:	1101;	XIV:	1010;	XV:	0100;	XVI:	1000	

0000110010111101

Advancing	to	DNA	sequence	assembly	is	straightforward

modfied	from	Compeau	et	al.	(2011)	Nature	Biotechnology	29(11)

Classical	overlap	assembly	
(read	identity	is	maintained)

Kmer	approaches	
(read	identity	is	lost)

De	Bruijn	Graph	Example 
Shred	reads	into	k-mers	(k	=	3)

G G A C T A A

G G A

G A C

A C T

C T A

T A A

G A C C A A A

G A C

A C C

C C A

C A A

A A A

53

Read	1 Read	2

GG	
(1x)

GA	
(1x)

AC	
(1x)

CT	
(1x)

TA	
(1x)

AA	
(1x)

GGA GAC ACT CTA TAA

GA	
(1x)

AC	
(1x)

CC	
(1x)

CA	
(1x)

AA	
(1x)

AA	
(1x)

GAC ACC CCA CAA AAA

De	Bruijn	Graph	Example 
Merge	vertices	labeled	by	identical	(k-1)-mers

Read	1:	

Read	2:

54

Resulting	Graph:
GG	
(1x

GA	
(2x)

AC	
(2x)

CT	
(1x)

TA	
(1x)

AA	
(2x)

CC	
(1x)

CA	
(1x)

AA	
(1x)

GG	
(1x)

GA	
(1x)

AC	
(1x)

CT	
(1x)

TA	
(1x)

AA	
(1x)

GA	
(1x)

AC	
(1x)

CC	
(1x)

CA	
(1x)

AA	
(1x

AA	
(1x)

Another	Example  
Construct	the	graph	(k	=	5)

AGAT	
(8x)

ATCC	
(7x)

TCCG	
(7x)

CCGA	
(7x)

CGAT	
(6x)

GATG	
(5x)

ATGA	
(8x)

TGAG	
(9x)

GATC	
(8x)

AAGT	
(3x)

AGTC	
(7x)

GTCG	
(9x)

TCGA	
(10x)

GGCT	
(11x)

TAGA	
(16x)

AGAG	
(9x)

GAGA	
(12x)

GACA	
(8x)

ACAA	
(5x)

GCTT	
(8x)

GCTC	
(2x)

CTTT	
(8x)

CTCT	
(1x)

TTTA	
(8x)

TCTA	
(2x)

TTAG	
(12x)

CTAG	
(2x)

AGAC	
(9x)

CGAG	
(8x)

CGAC	
(1x)

GAGG	
(16x)

GACG	
(1x)

AGGC	
(16x)

ACGC	
(1x)

55

A	branching	vertex	is	caused	by	either	a	repeat	in	the	original	sequence	or	a		
sequencing	error

Sequencing	errors	are	typically	
detected	by	a	coverage	cutoff	threshold

Condense	unbranched	runs	in	the	graph

AAGTCGA

TAGA
GCTTTAG

GCTCTAG

GAGACAA

CGAG

CGACGC

GAGGCT

AGATCCGATGAG

56

AGAG

Correct	sequencing	errors	using	a	coverage	
threshold

AAGTCGA

TAGA
GCTTTAG

GAGACAA

CGAG

GAGGCT

AGATCCGATGAG

57

AGAG

After	recondensation

AAGTCGAG GAGACAAGAGGCTTTAGA

AGATCCGATGAG

58

AGAG

Source:	Serafim	Batzoglou

Any	non-branching	path	in	this	graph		
corresponds	to	a	contig	in	the	original	sequence.

Taking	the	risk	of	following	arbitrary	branching		
paths	may	create	chimeric	species

Basic	concepts	of	de	Bruijn	graph	based	assemblers

• The	sequence	is	treated	as	a	consecutive	string	of	words	of	
length	K	

• Sequence	reads	are	no	longer	considered	to	represent	a	
consecutive	string	of	nucleotides.	Thus	read	length	as	well	as	
read	overlap	become,	in	principle,	irrelevant.	

• Sequence	reads	are	only	used	to	identify	words	of	length	K	
occurring	in	the	sequence.		

• Given	perfect	data	–	error-free	K-mers	providing	full	coverage	
and	spanning	every	repeat	–	the	K-mer	graph	would	be	a	de	
Bruijn	graph	and	it	would	contain	an	Eulerian	path,	that	is,	a	
path	that	traverses	each	edge	exactly	once.	

The	magic	‘Kmer’	gives	most	users	of	graph	based	assembly	
algorithms	a	very	hard	time	as	they	have	to	decide	on	the	size	of	K.

To	give	an	informed	statement	we	need	to	make	sure	to	understand	what	K	should	represent	
and	what	the	algorithmic	requirements	of	de	Bruijn	graph	assemblers	are

• K	must	represent	a	word	that	occurs	only	once	
in	the	sequence	that	should	be	assembled.	
Thus,	K	must	be	sufficiently	large.	

• de	Bruijn	graph	based	assemblers	assume	that	
each	word	of	length	K	occurring	in	the	genome	
is	also	represented	in	the	graph.	As	Kmers	are	
collected	from	a	finite	set	of	sequence	reads,	K	
must	not	be	too	large.		

• consider	a	DNA	word	of		K=2,	how	often	does	
it	on	average	occur	in	a	string	of	16	bp?		

• How	about	a	word	of	K=25*

Default	for	Trinity	(Grabherr	et	al.	2011)

Take	home	message:	If	K	is	only	sufficiently	large	the	
chance	for	any	Kmer	to	occur	more	than	once	in	a	

(repeat-free)	genome	approaches	0.	

Why	not	using	simply	the	read	length	as	K?

Why	K	must	not	be	too	large

AGACTAGAGAATTGCGATAG

A	sequence	of	length	20	contains	11	different	words	of	length	10!

Now,	consider	the	sequence	is	spanned	by	2	reads	of	length	13:

AGACTAGAGAATTGCGATAG
AGACTAGAGAATT

AGAATTGCGATAG

T:
R1:
R2:

It	is	easy	to	see	that	not	all	11	words	of	length	10	can	be	reconstructed	with	the	two	reads.	
This	violates	the	key	assumption	of	the	de	Bruijn	graphs
It	is	also	easy	to	see	that	reducing	K	ameliorates	the	problem	and	eventually	gets	rid	of	it	
(just	consider	K=1…)

k = 151
N50: 57 kbp

Reference: 40%

Assembly parameter optimization using maximization
of average contig length (N50) as objective can

preclude an entire genome from being assembled

k = 51
N50: 22 kbp

Reference: 99%

Fungal kmers

Algal kmers & seq
errors

Fungal kmers
Algal kmers

seq errors

