
Mapping 
Summary	and	Extension

1)Align	reads	to	reference	(using	Bowtie)	
1. Index	the	reference	sequence	

1. bowtie2-build	Clagr3_AssemblyScaffolds.fasta	Clagr3_AssemblyScaffolds.fasta	

2. Mapping	with	bowtie2	
1. bowtie2	-x	Clagr3_AssemblyScaffolds.fasta		
-1	Clagr3_AssemblyScaffolds.fasta.mod.art1.fq		
-2	Clagr3_AssemblyScaffolds.fasta.mod.art2.fq	-S	Clagr-mod.sam	

3. Convert	Alignment	in	SAM	format	into	binary	format	and	sort	
1. samtools	view	-bS	Clagr-mod.sam	|samtools	sort	-	Clagr-mod.sorted	

4. Indexing	of	the	sorted	bam	file	
1. samtools	index	Clagr-mod.sorted.bam	

5. start	up	tablet	and	load	the	assembly	

1)Remember:	We	have	converted	alignments	to	
binary	format	(SAMtools)	and	sorted	them	

1. Convert	SAM	to	BAM	for	sorting	
samtools	view	-S	-b	my.sam	>	my.bam	

2. Sort	BAM	for	SNP	calling	
samtools	sort	my.bam	my-sorted	

The	alignments	are	now	in	a	format	(BAM)	suitable	for	long-term	storage	
requiring	less	disk	space	
The	alignments	are	now	sorted	to	facilitate	SNP	calling

2)Call	SNPs	(using	SAMtools)	
1. Index	the	genome	assembly	(note,	this	is	no	longer	an	index	based	on	

Burrows-Wheeler	transformation).	See	e.g.	http://
manpages.ubuntu.com/manpages/trusty/man5/faidx.5.html	for	details.	
samtools	faidx	my.fasta	

2. Run	‘mpileup’	to	generate	VCF/BCF	format	
samtools	mpileup	-g	-f	my.fasta	my-sorted-1.bam	>	my-raw.bcf	
#	NOTE:	check	samtools	mpileup	to	see	all	options	and	the	meaning	of	the	
individual	flags	

All	the	has	been	done	so	far	is	indexing	a	reference	sequence	in	fasta	format	to	
facilitate	a	rapid	access	(faidx).	In	addition	we	have	converted	a	file	in	BAM	
format	to	a	file	in	VCF/BCF	format

http://manpages.ubuntu.com/manpages/trusty/man5/faidx.5.html

3)	Call	SNPs	(using	bcftools)	

1. Call	SNPs…	
#	Note:	This	call	is	for	the	bcftools	version	0.x	
bcftools	view	-bvcg	my-raw.bcf	>	my-var.bcf	

#	for	bcftools	version	1.x	use	the	following	command	
bcftools	call	-vc	my-raw.bcf	-o	my-var.vcf	

A	short	recap:		
samtools	mpileup	-	Collects	summary	information	in	the	input	
BAMs,	computes	the	likelihood	of	the	data	given	each	possible	
genotype	(if	this	option	has	been	chosen	with	the	flag	-g),	and	
stores	the	likelihoods	in	the	BFC	format.	

bcftools	view	-		applies	the	prior	and	does	the	actual	SNP	
calling.

3)	Optionally	filter	SNPs	using	vcfutils.pl	

1. Filter	SNPs…	
bcftools	view	my-var.vcf	|vcfutils.pl	varFilter	-	>	my.var-final.vcf	
#	Note:	vcfutils.pl	is	a	perl	script	that	helps	filtering	variants	according	to	a	certain	
set	of	parameters:	

Usage:	vcfutils.pl	varFilter	[options]	<in.vcf>	
Options:	-Q	INT	minimum	RMS	mapping	quality	for	SNPs	[$opts{Q}]	
-d	INT	minimum	read	depth	[$opts{d}]	
-D	INT	maximum	read	depth	[$opts{D}]	
-a	INT	minimum	number	of	alternate	bases	[$opts{a}]	
-w	INT	SNP	within	INT	bp	around	a	gap	to	be	filtered	[$opts{w}]	
-W	INT	window	size	for	filtering	adjacent	gaps	[$opts{W}]	
-1	FLOAT	min	P-value	for	strand	bias	(given	PV4)	[$opts{1}]	
-2	FLOAT	min	P-value	for	baseQ	bias	[$opts{2}]	
-3	FLOAT	min	P-value	for	mapQ	bias	[$opts{3}]	
-4	FLOAT	min	P-value	for	end	distance	bias	[$opts{4}]	
-e	FLOAT	min	P-value	for	HWE	(plus	F<0)	[$opts{e}]	
-p	print	filtered	variants	

This	example	shows	(in	order):	a	good	simple	SNP,	a	possible	SNP	that	has	been	filtered	out	because	its	quality	is	below	10,	

a	site	at	which	two	alternate	alleles	are	called,	with	one	of	them	(T)	being	ancestral	(possibly	a	reference	sequencing	

error),	a	site	that	is	called	monomorphic	reference	(i.e.	with	no	alternate	alleles),	and	a	microsatellite	with	two	alternative	

alleles,	one	a	deletion	of	2	bases	(TC),	and	the	other	an	insertion	of	one	base	(T).	Genotype	data	are	given	for	three	

samples,	two	of	which	are	phased	and	the	third	unphased,	with	per	sample	genotype	quality,	depth	and	haplotype	

qualities	(the	latter	only	for	the	phased	samples)	given	as	well	as	the	genotypes.	The	microsatellite	calls	are	unphased.

Source:	VCFv4.2	(See	course	page)

The	VCF	Format:	An	overview

