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Abstract.— Phylogenomic analyses of large sets of genes or proteins have the potential to revolutionize our understanding of
the tree of life. However, problems arise because estimated phylogenies from individual loci often differ because of different
histories, systematic bias, or stochastic error. We have developed CONCATERPILLAR, a hierarchical clustering method based
on likelihood-ratio testing that identifies congruent loci for phylogenomic analysis. CONCATERPILLAR also includes a test for
shared relative evolutionary rates between genes indicating whether they should be analyzed separately or by concatenation.
In simulation studies, the performance of this method is excellent when a multiple comparison correction is applied. We
analyzed a phylogenomic data set of 60 translational protein sequences from the major supergroups of eukaryotes and
identified three congruent subsets of proteins. Analysis of the largest set indicates improved congruence relative to the full
data set and produced a phylogeny with stronger support for five eukaryote supergroups including the Opisthokonts, the
Plantae, the stramenopiles + Apicomplexa (chromalveolates), the Amoebozoa, and the Excavata. In contrast, the phylogeny
of the second largest set indicates a close relationship between stramenopiles and red algae, to the exclusion of alveolates,
suggesting gene transfer from the red algal secondary symbiont to the ancestral stramenopile host nucleus during the
origin of their chloroplast. Investigating phylogenomic data sets for conflicting signals has the potential to both improve
phylogenetic accuracy and inform our understanding of genome evolution. [Concatenated analysis; endosymbiotic gene
transfer; hierarchical clustering; lateral gene transfer; likelihood ratio testing; maximum likelihood; phylogenetic congruence;
phylogenomics; separate analysis; superkingdom; supermatrix analysis.]

The combined phylogenetic analysis of multiple genes
or proteins has become popular due to the poor res-
olution of phylogenies based on single loci, and has
been facilitated by the exponential growth of public se-
quence databases. In a number of recent high-profile
studies, several to hundreds of genes have been com-
bined into supermatrices to infer better-resolved phylo-
genies within the major taxonomic groups, including the
animals (Rokas et al., 2005), plants (Philippe et al., 2005),
fungi (James et al., 2006), Archaea (Brochier et al., 2005),
and even the tree of life (Ciccarelli et al., 2006). Multigene
or multiprotein analyses are usually predicated on the as-
sumption that the combined genes all share the same his-
tory that is reflective of organismal relationships, and, by
combining them, stochastic error in the phylogenetic es-
timate should be reduced (de Queiroz and Gatesy, 2007).
However, gene trees and species trees do not always
agree because of population-level lineage sorting (Pol-
lard et al., 2006), hybridization (McBreen and Lockhart,
2006), gene duplication and differential loss, and lateral
gene transfer (LGT), whereby genes are exchanged be-
tween lineages (Dagan and Martin, 2006; Beiko et al.,
2005). In these situations, a single bifurcating tree cannot
describe the disparate histories of genes under analysis.
Genes may also appear to have different evolutionary
histories due to inadequacy of the model used in phy-
logenetic inference (systematic error). Here, we define
incongruence between genes as phylogenetic incompat-
ibility, either due to truly different evolutionary history,
or to systematic error. In either case, phylogenetic analy-
sis based on the combined markers can be problematic,
because there is no guarantee that the tree estimated by
this approach will properly describe the history of any of
the loci under consideration. Estimates of single-gene or
single-protein phylogenies can also differ due to stochas-

tic error associated with the small amount of information
contained in a single marker. Unfortunately, it is difficult
to determine a priori whether topological differences be-
tween single-gene trees result from incongruence or from
stochastic error.

Despite these difficulties, large-scale phylogenomic
studies often do not explicitly deal with the issue of con-
gruence (Rokas et al., 2005; Qiu et al., 2006; James et al.,
2006) or do so in rather ad hoc ways (Ciccarelli et al.,
2006). Nevertheless, several methods have been devel-
oped to assess congruence among markers in a phylo-
genetic analysis (see Planet, 2006, for a recent review).
For instance, the incongruence length difference (ILD)
test (Farris et al., 1995) is a parsimony-based method
that compares the length of the tree inferred from the
combined data set to the combined length of the trees
inferred for each locus in the data set. Although ini-
tially designed to be an all-or-none congruence test, this
method has been extended to allow the identification of
congruent subsets of markers (Planet et al., 2003). How-
ever, there are numerous problems with the ILD test. As a
parsimony-based test, it is sensitive to evolutionary con-
ditions such as variable evolutionary rates in lineages or
variation of rates across sites (Darlu and Lecointre, 2002).
In addition, P-values from the ILD test correlate poorly
with improvement in phylogenetic resolution resulting
from concatenation (Barker and Lutzoni, 2002). The ILD
test is therefore not particularly useful as a congruence
test, particularly in a probabilistic framework.

In a maximum likelihood (ML) context, hypothe-
sis tests such as the approximately unbiased (AU)
(Shimodaira, 2002) or the Shimodaira-Hasegawa (SH)
(Shimodaira and Hasegawa, 1999) test have been used
to determine whether individual markers reject the tree
inferred from the concatenation of all markers (Lerat
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et al., 2003). This method is problematic, because the out-
come is strongly dependent on topologies selected by
the user. Yet another method uses principal components
analysis (PCA) to cluster responses (e.g, log-likelihoods
or P-values) of individual markers to several different
candidate tree topologies (Brochier et al., 2005). Congru-
ent markers are expected to display similar responses
to different tree topologies and will therefore cluster to-
gether. However, markers with little phylogenetic signal
will have similar, neutral responses to most topologies
and will therefore cluster together, though this clustering
due to lack of signal is not clearly equivalent to congru-
ence (Bapteste et al., 2005; Susko et al., 2006). In addition,
this method is highly sensitive to the topologies tested,
and it is difficult to objectively identify clusters of con-
gruent markers. Another likelihood-based method has
been proposed that employs heat maps to cluster mark-
ers based on similar hypothesis test P-values for a set of
tree topologies (Bapteste et al., 2005; Susko et al., 2006).
Heat maps can be extremely powerful for identifying
incongruence among markers, but results are largely
qualitative, and they are of limited use for objectively
identifying congruent subsets of markers.

Bayesian methods for the explicit estimation of mul-
tiple topologies from multigene data have recently been
developed (Suchard, 2005). These methods, although
promising, are computationally infeasible for the large
numbers of taxa and markers typically present in com-
prehensive phylogenetic analyses of major taxonomic
groups. Ané et al. (2006) have developed an alterna-
tive Bayesian approach whereby concordance between
partitioned phylogenetic markers is estimated by a two-
stage Markov chain Monte Carlo analysis. Although
this method can be used for larger data sets, the pos-
terior concordance estimates are heavily dependent on
user-specified parameters of the prior distributions, lim-
iting their usefulness in the absence of background
information.

Apart from the question of whether data from separate
loci should be combined at all, the choice of an appropri-
ate method for combining these data must be considered.
We restrict our focus here to two supermatrix methods of
data combination. In straightforward concatenated anal-
ysis (e.g., Baldauf et al., 2000; Fitzpatrick et al., 2006),
single-marker alignments are combined in a superma-
trix, from which a tree is inferred. In the separate anal-
ysis method (e.g., Hasegawa et al., 1992; Bapteste et al.,
2002; Simpson et al., 2006; Pupko et al., 2002), alignments
themselves are not directly combined; instead, during a
likelihood-based tree searching process, log-likelihoods
are evaluated separately for each alignment and then
summed over all alignments for a given tree. The tree
that maximizes this sum is then the maximum likeli-
hood (ML) tree. The advantage of separate analysis is
that different markers that evolve under different relative
lineage-specific evolutionary rates are modeled better.
However, the additional parameters may not be justified,
in which case the inference power is reduced by model
overfitting. Hybrid methods, in which branch lengths
are scaled by a marker-specific rate for each marker in

a multilocus data set, have also been proposed (Yang,
1996; Pupko et al., 2002; Bevan et al., 2005).

Motivated by the shortcomings of existing methods,
we have developed an application, CONCATERPILLAR,
that uses hierarchical clustering and likelihood-ratio test-
ing (LRT) to detect congruence in multigene or multiple-
protein data sets. It is based on a LRT similar to that
proposed by Huelsenbeck and Bull (1996) that compares
the likelihood of markers forced to share a tree topol-
ogy to their likelihoods when each is allowed its own
tree topology. Once topological congruence is assessed,
as a second stage of analysis CONCATERPILLAR uses sim-
ilar methodologies to identify branch-length congruence
(i.e., among topologically congruent markers), indicating
which markers should be combined by concatenation,
and which should have nuisance parameters separately
optimized.

METHODS

Log-Likelihood Ratio Calculation
Likelihood ratios for the assessment of topological

congruence are as defined in Huelsenbeck and Bull
(1996). Let l j denote a log-likelihood calculated for that
data from alignment j and let τ̂ j , t̂ j , and α̂ j denote the
corresponding estimated topology, edge-lengths, and
shape parameter for the # model of rates across sites.
For instance, lA(τ̂AB, t̂A, α̂A), denotes the log-likelihood
calculated with the sites in alignment A, for the topology
τ̂AB estimated from concatenated alignments A and
B, with corresponding edge-lengths t̂A and shape
parameter α̂A estimated just using the data from A. The
log-likelihood ratio is then given by:

$A, B = lA(τ̂A, t̂A, α̂A) + lB(τ̂B, t̂B , α̂B)

− [lA(τ̂AB, t̂A, α̂A) + lB(τ̂AB, t̂B , α̂B)] (1)

For the branch-length congruence test, the log-
likelihood ratio is calculated between the likelihood of
the two markers when branch lengths (and other nui-
sance parameters) are optimized separately and their
likelihood when forced to share jointly optimized param-
eters (i.e., under concatenated analysis). The tree topol-
ogy, τ̂ used for this test is inferred from the concatenation
of all markers. The log-likelihood ratio is given by:

$A, B = lA(τ̂ , t̂A, α̂A) + lB(τ̂ , t̂B , α̂B)

− [lA(τ̂ , t̂AB, α̂AB) + lB(τ̂ , t̂AB, α̂AB)] (2)

For more complex evolutionary models than those cur-
rently implemented in CONCATERPILLAR, additional pa-
rameters would necessarily be included in Equations 1
and 2.

Inference of Phylogenies and Likelihood Calculation
Given that trees must be inferred for all markers,

as well as all pairs of markers (for n markers, a to-
tal of 1

2 (n2 + n) trees are estimated), a reasonably quick
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inference method was required. Consequently, phylo-
genetic trees are inferred with PHYML (Guindon and
Gascuel, 2003). Likelihoods for trees produced from
concatenated pairs of markers are then assessed for rele-
vant single markers (e.g., for the tree inferred from con-
catenated markers Aand B, T̂AB , likelihoods l A

T̂AB
and l B

T̂ABare calculated). For this likelihood calculation, TREE-
PUZZLE (Schmidt et al., 2002) is used. For both TREE-
PUZZLE and PHYML, the substitution model is selected by
the user. Rates across sites is modeled by a four-category
discretized # distribution. During tree estimation, the
shape parameter is optimized by PHYML for every tree
inferred. For the TREE-PUZZLE–based likelihood calcula-
tion, the shape parameter estimated by PHYML for an
individual data set (i.e., a single marker or set of con-
gruent markers) is used to evaluate the likelihood of the
single data set under any tree considered.

Assessment of Significance
In the test for topological congruence, after likeli-

hood ratios are determined for all pairs of markers,
the pair with the smallest likelihood ratio (i.e., the pair
least likely to reject congruence) is chosen, and a P-
value (the probability of observing the likelihood ra-
tio if the two markers were congruent) is determined.
Due to the discrete nature of tree-topologies, χ2 dis-

FIGURE 1. General overview of the CONCATERPILLAR algorithm. For both congruence tests, CONCATERPILLAR follows a similar algorithm.
For all pairs of markers, a log-likelihood ratio is calculated. A p-value is estimated for the pair with the smallest ratio (i.e., the most congruent
pair). If the p-value falls below the user-defined α level, congruence is rejected, and the test ends. Otherwise, the markers are combined, and the
test continues, with the two markers treated as one thereafter.

tributions cannot be used to calculate the P-value. In-
stead, a bootstrapping method is used. Nonparametric
bootstrapping was chosen over parametric bootstrap-
ping in order to avoid effects of model misspecifica-
tion. For half of the bootstrap replicates, columns are
drawn from one of the two aligned markers, while they
are drawn from the other marker for the remaining
replicates. Assuming all sites within a single marker
are congruent, this technique ensures that resampled
alignments are topologically congruent for the null
distribution.

Although a similar procedure is used in the assess-
ment of significance for the branch-length congruence
test, no bootstrapping is required. Under the null hy-
pothesis of congruence, twice the likelihood ratio used in
this test is χ2 distributed with degrees of freedom equal
to the difference in number of parameters between the
two models compared. In this case, there are 2n − 2 addi-
tional parameters when each marker is allowed its own
branch lengths and shape parameter for # distributed
rates across sites.

For either test, if the P-value is larger than the user-
defined cutoff (α level), congruence is not rejected, and
the pair is combined. The test then continues, treating
this pair as a single marker. If, however, the P-value falls
below the α level, congruence is rejected and the test ends
(Fig. 1).

 by Ingo Ebersberger on M
ay 4, 2012

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


2008 LEIGH ET AL.—CONGRUENCE IN PHYLOGENOMIC ANALYSIS 107

Multiple Comparison Corrections
The methodology used in CONCATERPILLAR results in

two opposing multiple-testing problems. First, the rep-
etition of the likelihood-ratio test over the levels of the
hierarchy (Fig. 1) results in an increase in the probability
of type I error (false rejection of congruence) at some level
of the hierarchy as the number of levels increases. Sec-
ondly, the probability of type I error decreases with the
number of likelihood-ratios compared at a given level of
the hierarchy (i.e., the number of phylogenetic markers
or sets of combined markers). Treating individual tests
as independent, the two errors can be accommodated
by adjusting the α level. Congruence is rejected when
likelihood-ratio test P-values are less than the adjusted α
level. Let αu denote the user-defined α level (e.g., 0.05), k
the number of levels in the hierarchy, and c the number
of independent comparisons made at a given level of the
hierarchy. The adjusted α level, αc , is then:

αc =
[
1 − (1 − αu)

1
k
] 1

c (3)

Under the hypothesis that all genes are congruent (H0),
k is one less than the total number of markers tested,
and c varies throughout the hierarchy, and is approxi-
mated here by half the number of markers (or clusters of
markers), n, at any given level of the hierarchy. This is an
approximation because, even though there are (

(n
2

)
) com-

parisons made at each level of the hierarchy, only (the
largest integer not exceeding) n

2 of these, corresponding
to non-overlapping concatenations, are truly indepen-
dent. Thus, the correction under the null is given by:

αc =
[
1 − (1 − αu)

1
k
]" n

2 #−1

(4)

However, our simulation analyses indicated that this cor-
rection may be too stringent. In cases where H0 is not
true (that is, at least some markers are incongruent),
many of the comparisons made at a given hierarchical
level will correspond to the alternative hypothesis, for
which P-values are expected to be smaller than those pre-
dicted for H0. Consequently, a corrected α level based
on H0 will be larger than necessary. We have also in-
vestigated the performance of some alternative correc-
tions. First, we estimated the number of clusters using
the uncorrected, user-defined α level, αu. We then ap-
plied Equation 3, defining k as the predicted number
of levels and c as the sum of half the number of mark-
ers (ni ) in each predicted cluster (c varies through-
out the hierarchy). This within-cluster correction then
becomes:

αc =
[
1 − (1 − αu)

1
k
](∑C

i=1" ni
2 #)−1

(5)

where C is the number of clusters. In this case, the correc-
tion takes into account only within-cluster comparisons,
those comparisons for which H0 is true. For highly con-
gruent data sets, the number of clusters will be smaller,
and the number of within-cluster comparisons will in-

crease. As a result, αc will be increased. This correction is
logical because P-values in more highly congruent data
sets are likely to be higher, maintaining the meaning of
αu as the probability of type I error. On the other hand, it
might be more appropriate to use an αc that favors combi-
nation of markers when data are largely congruent, and
penalizes clustering when less congruence is predicted.
Consequently, we have also examined the performance
of a correction formula that takes into account only the
predicted number of levels in the test hierarchy. The for-
mula for this hierarchy-only correction is given by:

αc = 1 − (1 − αu)
1
k (6)

Simulations
The performance of both the topological and branch-

length congruence tests was evaluated using amino
acid sequences simulated using Seq-Gen (Rambaut and
Grassly, 1997) under various evolutionary scenarios. In
all cases, proteins were simulated under WAG+#. JTT+#
was used in phylogenetic inference and likelihood cal-
culation in CONCATERPILLAR, in order to simulate slight
model misspecification. For the topological congruence
test, 10 alignments of 10 sequences were simulated either
all under the same topology (but with different branch
lengths), under 10 different topologies (a different topol-
ogy for each alignment), under 9 different topologies
(two alignments shared a topology, each of the eight
others was simulated under its own topology), or un-
der 3 different topologies (five alignments shared one
topology, three shared a second, and two shared a third
topology). It should be noted that, due to the additional
time required for multiple simulations with CONCATER-
PILLAR, the number of alignments used in these simu-
lations is considerably smaller than might be included
in a typical phylogenomic analysis. The topologies for
these simulations were inferred from single-protein and
concatenated alignments chosen from a set of 60 trans-
lational proteins described below (see also Supplemen-
tal Materials, available at http://www.systbiol.org). For
each of these scenarios, 100 simulations were performed.
CONCATERPILLAR was used to identify topologically con-
gruent sets for each simulation, using an uncorrected α
level of 0.05, as well as corrections of this value given in
Equations 4 to 6.

For the branch-length test, we analyzed 100 simulated
10-protein data sets generated from a single 10-sequence
topology that was chosen by concatenating 10 align-
ments from among 60 eukaryotic translational proteins
(described below). The alignments were simulated with
either the same branch lengths and α parameter; differ-
ent branch lengths (and α parameter) for all alignments;
shared α and branch lengths for two alignments, but dif-
ferent parameters for the eight other proteins; or three
sets of branch lengths and α parameters (one set of pa-
rameters shared for five alignments, another set for three
alignments, and a third set for the remaining two align-
ments). Branch lengths and α parameters used for these
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simulations were all chosen from maximum likelihood
estimates for single or concatenated alignments from
among the 60 eukaryotic translational proteins de-
scribed below (see also Supplemental Materials). Once
again, branch-length congruent sets were identified us-
ing CONCATERPILLAR with an uncorrected α level of 0.05
and the three multiple-comparison corrections of this
value.

Receiver operating characteristic (ROC) curves (Zweig
and Campbell, 1993) were plotted separately for the
branch-length and topological congruence tests in order
to evaluate the performance of the tests using each of the
multiple comparison correction formulas. For each cor-
rection of α levels between 0 and 1, with increments of
0.01, the proportion of pairs of congruent loci correctly
assigned to the same cluster was plotted against the pro-
portion of incongruent loci incorrectly assigned to the
same cluster.

Global Eukaryotic Phylogeny
Alignments of 60 ribosomal proteins from Bapteste

et al. (2002) were kindly provided by Hervé Philippe.
The taxonomic representation in these alignments was
enhanced and missing data were filled in by manu-
ally adding sequences from the GenBank database using
standard searching methods. In addition, the sequences
for these 60 proteins from Naegleria gruberi were ob-
tained from an expressed sequence tag (EST) project that
will be described elsewhere (Sjögren, Gill, and Roger,
unpublished data). Alignments were visually inspected
and ambiguously aligned regions were excluded from
further analysis. The final data set had 60 proteins, 22
species, and 9532 total sites. All data sets were deposited
in TreeBASE under accession number SN3537.

The 60 alignments were analyzed for topological con-
gruence using CONCATERPILLAR with an initial α level
of 0.05, and the total number of levels of the hierarchy
was predicted via a single round of uncorrected analy-
sis as described above. The α level was then corrected
based on the predicted number of test iterations using
Equation 6, as this method performed best overall in
the simulation analyses. Phylogenetic analysis in CON-
CATERPILLAR used JTT+#4, with the shape parameter es-
timated from the data.

For the set of 60 proteins, as well as each topologically
congruent set, proteins were concatenated and a tree was
inferred using IQPNNI (Vinh le and Von Haeseler, 2004)
with WAG+#4, and bootstrap support was determined
from 100 replicates. Additional bootstrap support values
(BSJK60) for the set of all 60 proteins were determined us-
ing a combination of jackknife and bootstrap resampling
in order to produce support values that would be more
easily comparable to those obtained from the largest con-
gruent set of proteins. In this method, 6243 columns (the
number of sites in the larges topologically congruent set)
were chosen at random from among the 9532 sites in the
concatenated 60-protein alignment. These sites were then
resampled with replacement to produce a bootstrapped
alignment with 6243 positions, from which a tree was in-

ferred. This jackknife + bootstrap process was repeated
100 times.

Each set of congruent proteins was analyzed with
CONCATERPILLAR’s branch-length congruence test in or-
der to determine which proteins should be analyzed
separately (again, an initial α level of 0.05 was cor-
rected based on the predicted number of test levels).
For the largest congruent set, those proteins found to
have congruent branch lengths were concatenated, and
the resulting set of proteins and concatenated sets of
proteins were analyzed separately using an exhaus-
tive search strategy with constraints on certain nodes
of the tree. Opisthokonta, Sarcocystidae + Plasmodium,
Chlamydomonas + land plants, Amoebozoa, and Excavata
were constrained, and all resulting 945 trees were eval-
uated by separately calculating the likelihood for each
branch-length congruent set using TREE-PUZZLE, and
log-likelihoods were summed over all sets. RELL boot-
strap support was determined by resampling (with re-
placement) site wise likelihoods individually from each
protein and choosing the best tree for each of 10,000
replicates. For comparison, RELL support was also de-
termined from the concatenation of all proteins in this
set, using the same set of 945 trees.

RESULTS AND DISCUSSION

CONCATERPILLAR Accurately Identifies Incongruence
We have developed an application, CONCATERPILLAR

(available from http://www.rogerlab.biochem.dal.ca/
Software/Software.htm), in which we have imple-
mented methods to test for two kinds of hypotheses
in supermatrix analysis. The first is the null hypothe-
sis (H0) that the phylogenies of markers in the super-
matrix are congruent. If we cannot reject congruence
for a set of markers, the second hypothesis to test is
whether or not the markers to be combined have signif-
icantly different evolutionary dynamics (branch lengths
and rates-across-sites parameters); that is, whether
they should be concatenated or subjected to separate
analysis.

In order to determine the accuracy with which CON-
CATERPILLAR identifies topological congruence, we eval-
uated its performance with data simulated under four
scenarios: A, complete congruence; B, three congruent
sets; C, two congruent and eight incongruent proteins;
and D, complete incongruence. Table 1 shows the re-
sults from the various α level corrections and test sce-
narios as the frequency with which pairs of proteins
were correctly or incorrectly identified as either congru-
ent or incongruent. The performance of the corrections
depended heavily on the degree of congruence amongst
the proteins. In highly congruent scenarios (three sets
or complete congruence), correcting under H0 or for the
number of within-cluster comparisons resulted in con-
siderably poorer performance than when the hierarchy-
only correction was applied; the use of an uncorrected
α level also resulted in poor performance when all pro-
teins were congruent. When all proteins were incongru-
ent, all the corrections did well. The case where there was
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TABLE 1. Performance of the topological congruence test under A:
complete congruence, B: three congruent sets; C: only two congruent
proteins; and D: complete incongruence.

CONCATERPILLAR prediction

No correction Under H0 Within-cluster Hierarchy onlyTrue
classification T NT T NT T NT T NT

A
T 0.885 0.115 0.862 0.138 0.878 0.122 0.986 0.014
NT 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000

B
T 0.959 0.041 0.799 0.201 0.899 0.101 0.994 0.006
NT 0.004 0.996 0.010 0.990 0.012 0.988 0.012 0.988

C
T 0.960 0.040 0.790 0.210 0.920 0.080 0.980 0.020
NT 0.058 0.942 0.017 0.983 0.079 0.921 0.090 0.910

D
T 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
NT 0.037 0.963 0.007 0.993 0.047 0.953 0.054 0.946

T = proteins clustered together; NT = proteins did not cluster together.

a single pair of congruent proteins with all others incon-
gruent was the most difficult to correctly recover, and
the correction under the null did particularly poorly in
this case. By contrast, the hierarchy-only correction did
well under all of the various conditions. We investigated
the performance of the corrections further by plotting
ROC curves for all four corrections for all four simula-
tion conditions combined (Fig. 2a). The ROC curves indi-
cate that all of the methods do reasonably well, with the
hierarchy-only correction showing the best overall per-
formance and the within-cluster correction the poorest.

A similar set of simulations was used to evaluate the
effectiveness of the branch-length congruence test. In
this case, sets of 10 proteins were all simulated under
the same topology but with either the same or differ-
ent sets of branch lengths. Again, there were four sets
of simulations: A, all proteins were simulated with the
same branch lengths; B, three sets of branch lengths; C,
only two proteins shared branch lengths; and D, all pro-
teins were simulated with different branch lengths. Once
again, the hierarchy correction outperformed other for-
mulas (Table 2, Fig. 2b).

Both the topology and branch-length tests were able to
accurately identify congruence when the hierarchy cor-
rection was applied. Surprisingly, type I error was much
higher in the branch-length congruence test than in the
topological congruence test, regardless of the correction
formula used. The source of this discrepancy is unclear
but may have to do with easier discrimination between
discrete objects like topologies, in comparison to continu-
ous objects like branch lengths that can differ but be very
similar. In any case, increased type I error will bias the
branch-length test towards rejecting congruence, result-
ing in the separate analysis of some proteins that should
be concatenated, and increasing the variance of the re-
sulting phylogenetic estimate. However, this increase in
random error seems acceptable when weighed against
the potential for systematic error incurred by falsely
concatenating proteins with different branch length sets
(e.g., Kolaczkowski and Thornton, 2004).

Exclusion of Incongruent Markers Improves Phylogenetic
Resolution for Eukaryotic Supergroups

To test CONCATERPILLAR on a real data set, we ap-
plied it to estimating superkingdom-level relationships
amongst eukaryotes with 60 alignments of transla-
tional components including ribosomal proteins, initi-
ation factors, and elongation factors (Supplemental Ma-
terials). CONCATERPILLAR’s topological congruence test
was used to identify congruent sets of proteins using an
initial α level (αu) of 0.05, which was then corrected based
on the predicted number of hierarchical levels (Equa-
tion 6), because this correction clearly performed best
with simulated data. Applying the uncorrected α level
results in a prediction of 53 levels. Substituting k = 53
into Equation 6, αc becomes 9.67 × 10−4, which results
in rejection at the 58th level. Reiteration of the correc-
tion formula with k = 58 produces an αc of 8.84 × 10−4,
which results once again in rejection of H0 at level 58 (i.e.,
αc has converged). These sets remained stable with an α
level of 0.01 with the same multiple comparisons correc-
tion. From these corrections, three mutually incongruent
sets of proteins were identified, containing 35, 15, and 10
proteins, respectively. ML phylogenies inferred from the
concatenation of all of the proteins as well as in each of
the three sets are shown in Fig. 3.

The topology based on all 60 proteins (Fig. 3a) showed
five superkingdom-level groups of eukaryotes that have
been proposed based on a variety of other data (Keeling
et al., 2005; Simpson and Roger, 2004), including the Plan-
tae, the Chromalveolates, the Excavata, the Amoebozoa,
and the Opisthokonta. Interestingly, however, the boot-
strap support for these groupings in some cases is rela-
tively weak (e.g., 53% for Chromalveolata and 56% for
Plantae) despite the relatively large size of this data set.
Not surprisingly, the topology inferred from the largest
congruent set (35 proteins; Fig. 3b) is topologically simi-
lar to the 60-protein topology, differing only in the posi-
tions of Naegleria and of Caenorhabditis. More interest-
ingly, the bootstrap support values for many groups
changed substantially, with bootstrap support values ob-
tained from the set of 35 proteins (BS35) generally in-
creasing relative to boostrap values obtained from the
60-protein data set (BS60). The support for Plantae in-
creased from 56% to 91%, support for stramenopiles +
Apicomplexa (chromalveolates) increased from 53% to
91%, support for Plantae + Chromalveolata increased
from 85% to 99%, and support for Excavata + Amoebo-
zoa increased from 79% to 97%.

These increases in bootstrap support are observed de-
spite a marked reduction in the number of amino acid
characters in the 35-protein set (6243, compared to 9532
sites in the 60-protein set). In order to compare support
values from an equivalent number of positions, a jack-
knife + bootstrap method was used to obtain additional
support values (BSJK60) from the 60-protein set. The
difference between BSJK60 and BS35 values was even
greater than when BS35 and BS60 values were compared:
support for Plantae dropped to 49%, for chromalveolates
to 40%, 77% for Plantae + Chromalveolata, and 69% for
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FIGURE 2. ROC curves from simulation results with (a) topological congruence test and (b) branch-length congruence test. The best possible
performance of a classifier on an ROC diagram is indicated by a curve that is in the top left-hand corner (high true-positive rate and low
false-positive rate), with the curve of a random classifier falling on the x = y line. For user-defined α levels between 0 and 1, CONCATERPILLAR
was used to identify congruence among simulated data with varying levels of congruence, using different correction formulas of the α level:
black, no correction; red, correction under H0; green, within-cluster correction; blue, hierarchy correction. For both the topological congruence
test (a) and branch-length congruence test (b), the number of proteins that were correctly clustered together was plotted against the number of
proteins that were falsely clustered together for each α level.
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TABLE 2. Performance of the branch-length congruence test under
A: complete congruence; B: three congruent sets; C: only two congruent
proteins; and D: complete incongruence.

CONCATERPILLAR prediction

No correction Under H0 Within-cluster Hierarchy onlyTrue
classification T NT T NT T NT T NT

A
T 0.481 0.519 0.752 0.248 0.044 0.956 0.770 0.230
N 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000

B
T 0.781 0.219 0.681 0.319 0.114 0.886 0.942 0.058
NT 0.002 0.998 0.002 0.998 0.000 1.000 0.002 0.998

C
T 0.810 0.190 0.470 0.530 0.690 0.310 0.840 0.160
NT 0.025 0.975 0.005 0.995 0.008 0.992 0.036 0.964

D
T 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
NT 0.022 0.978 0.004 0.996 0.015 0.985 0.029 0.971

T = proteins clustered together; NT = proteins did not cluster together.

Excavata + Amoebozoa. For a few relationships, a no-
table increase in support was observed from BSJK60 to
BS35, where no significant difference had been noted
when BS35 had been compared to BS60: the monophyly
of excavates (BSJK60 = 81%; BS60 = 95%; and BS35 =
98%) and of Amoebozoa (BSJK60 = 75%; BS60 = 90%;
and BS35 = 95%). This result strongly suggests increased
congruence in the smaller set of proteins. However, it
is worth noting that, although the set of 35 proteins is
the largest, its phylogeny does not necessarily represent
the true organismal phylogeny: it is possible that these
proteins simply share similar features that result in phy-
logenetic artefact (e.g., long-branch attraction). For ex-
ample, the grouping of Amoebozoa and Excavata is not
supported by other data that we are aware of and con-
flicts with the proposed rooting of the eukaryote tree us-
ing gene fusion and gene family data between so-called
“bikont” groups (Chromalveolates, Excavata, Plantae)
and “unikont” groups (Opisthokonta and Amoebozoa;
see Richards and Cavalier-Smith, 2005, and references
therein).

Although CONCATERPILLAR’s performance is excel-
lent, as demonstrated by our simulations, a potential
problem arises from the multiple comparison correction,
which results in reduction of the α level; in this case, the
corrected α became 8.84 × 10−4, which resulted in rejec-
tion of the null hypothesis with a P-value of 0. However,
this P-value was determined from one hundred boot-
strap replicates; due to lack of precision, the very small α
level may result in false rejection of the null hypothesis.
Although increasing the number of bootstrap replicates
would improve the precision of the estimated P-value,
it would also result in a drastic increase in the run-time
of CONCATERPILLAR. Instead, we fitted the shape of the
distribution of bootstrap log-likelihood ratios to an ap-
propriate statistical distribution and then estimated the
P-value from this distribution. Of several tested, a
Weibull distribution fits the bootstrap values best
(Supplemental Materials). For our set of 60 proteins,
modeling the bootstraps with a Weibull distribution
resulted in the identification of the same three clusters,
with a P-value of 0.

Separate Analysis Lowers Bootstrap Support
For the topologically congruent set of 35 proteins,

CONCATERPILLAR’s branch-length congruence test was
used to identify proteins that could be concatenated.
An initial α level of 0.05 was corrected based on the
predicted number of levels in the test hierarchy. CON-
CATERPILLAR identified 23 sets of proteins that should
be analyzed separately, of which 12 contained only one
protein, 10 contained two proteins, and 1 contained three
proteins. These 23 sets were analyzed separately using an
exhaustive tree search strategy, with constraints on cer-
tain nodes. For those nodes that were not constrained,
bootstrap support from resampling of estimated log-
likelihoods (RELL; Kishino et al., 1990) is shown in
Fig. 3b. RELL bootstrap support values are also shown
for the concatenation of these 23 sets.

Compared to the concatenated analysis, bootstrap
support for key branches decreased somewhat when sep-
arate analysis was used, but in many cases the decrease
was small. Even in the absence of model misspecifica-
tion, this observation is expected because of the increase
in variance due to the increased number of parame-
ters associated with separate analysis relative to con-
catenated analysis. Interestingly, the largest decrease in
bootstrap support was observed for Amoebozoa + Ex-
cavata, which dropped from 91% to 80%. Because this
grouping is probably incorrect, it seems that, although
both analysis methods are affected by the same system-
atic error, this error is less prominent under separate anal-
ysis. Interestingly in this case, the alternative hypothesis,
Amoebozoa + Opisthokonta, which is consistent with
the unikont/bikont rooting of eukaryotes, increases in
bootstrap support from 9% in concatenated analysis to
20%. Thus at least some, but not all, of the support for
the Amoebozoa + Excavata grouping can be accounted
for by model misspecification from concatenating pro-
teins that should be separately analyzed. Other forms
of model misspecification, such as amino acid composi-
tional heterogeneity (Foster and Hickey, 1999) and site-
specific substitution processes (Lartillot and Philippe,
2004), may contribute to the support for this grouping,
but a thorough investigation of the causes of phyloge-
netic artifacts in this data set is beyond the scope of this
study.

Endosymbiotic Gene Replacement of Several
Ribosomal Proteins

Although there are many unusual phylogenetic rela-
tionships that appear in trees inferred from the smaller
congruent sets of proteins (particularly the 10-protein
set), they are generally either poorly supported by boot-
strap analysis, or appear to result from long-branch
attraction. However, one particularly interesting result
with biological implications comes from analysis of
the second-largest congruent set. In this set of 15 pro-
teins, the stramenopiles group with the rhodophyte
alga (Porphyra) to the exclusion of the Apicomplexa
with a bootstrap support value of 88%. Stramenopiles
+ Apicomplexa were supported by a value of 91% in
the tree based on the set of 35 proteins (86% under
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FIGURE 3. Maximum likelihood phylogenies inferred from 60 eukaryotic translational proteins and congruent subsets. (a) Tree for the
concatenated set of all 60 proteins. Bootstrap support from the entire set of 60 proteins (top value) and support values from jackknife resampling
of 6243 positions, followed by bootstrap resampling of these sites (bottom value) are indicated. In cases where bootstrap and jackknife + bootstrap
support values were identical, only one value is shown. (b) Tree from the congruent subset of 35 proteins. Bootstrap support using three different
methods is indicated: top value, support from IQPNNI-based analysis of bootstrap samples based on the 35 proteins, concatenated; middle value,
support from bootstrap analysis using the RELL technique of the 35 proteins, concatenated; lower value, support from RELL-based bootstrap
analysis of the 35 proteins using separate analysis of branch-length congruent subsets (23 sets). RELL bootstrap support values are only given
for nodes that were not constrained in the exhaustive search. (c) Tree from the congruent set of 15 proteins, concatenated. Bootstrap support is
indicated. (d) Tree from the congruent set of 10 proteins, concatenated. Bootstrap support is indicated.
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separate analysis), which is in accordance with the Chro-
malveolate hypothesis (Cavalier-Smith, 1999), whereby
stramenopiles, alveolates (including apicomplexa), hap-
tophytes, and cryptomonads form a monophyletic group
whose common ancestor harbored a secondary plastid
of red algal origin. The signal uniting the red algae and
stramenopiles to the exclusion of the apicomplexa sug-
gests that the genes encoding these 15 proteins may have
been transferred from the red algal endosymbiont prior
to the loss of its nucleus (the nucleomorph) but subse-
quent to the divergence of alveolates and stramenopiles.
Without the use of CONCATERPILLAR, detection of these
endosymbiotic gene transfers would be very difficult,
because phylogenies inferred from the individual pro-
teins are too poorly resolved (bootstrap support <50%
for key branches, data not shown) to confirm the rela-
tionship between rhodophytes and stramenopiles (nor
do they confirm the monophyly of either Plantae or chro-
malveolates). Clustering of genes with CONCATERPIL-
LAR, however, allows the common signal supporting the
relationship between rhodophytes and stramenopiles to
emerge.

Limitations of CONCATERPILLAR and Alternative Methods
We have demonstrated the utility of CONCATERPIL-

LAR in assessing congruence in large, multilocus data
sets. However, it must be noted that this method scales
poorly with very large numbers of loci, because the re-
quired evaluation of trees for all pairs of genes results
in a computational complexity of O(n2), where n is the
number of markers in the data set. Consequently, anal-
ysis of data sets with upwards of 150 markers and 30 to
40 taxa will be impractical without access to significant
computational resources. For this reason, the simulations
presented here included only ten alignments of ten se-
quences each, much smaller data sets than would nor-
mally be included in a truly phylogenomic analysis. The
hierarchical correction for the α level (Equation 6) was
chosen based on its performance with these simulations.
As computational power increases, the performance of
CONCATERPILLAR, particularly with respect to the choice
of an appropriate α level correction, should be assessed
with larger data sets.

In addition, care must be taken in interpreting results
obtained with CONCATERPILLAR. Although it is tempting
to assume that a phylogeny inferred from the largest set
of congruent markers is the species phylogeny, there are
many scenarios where this will not be the case. For ex-
ample, coalescence theory predicts situations in which
gene trees that do not reflect the species phylogeny
are actually more likely than those that do, for certain
combinations of branch lengths (Kubatko and Degnan,
2007). Similarly, one can envision scenarios involving
LGT, paralogy, and systematic error in which the species
tree is not recovered from the largest set of congruent
markers.

CONCATERPILLAR uses a hierarchical likelihood-ratio
testing framework to assess congruence among mark-
ers. Alternatives to the hierarchical clustering method
can be imagined, such as consideration of all possible

partitioning schemes. Because of the computational chal-
lenges of model fitting in phylogenetic contexts, con-
sidering all possible partitions is not at all feasible. The
hierarchical nature of aggregation provides an appropri-
ate compromise as information about pairwise compar-
isons obtained at one level of the hierarchy can be used
at other levels. A “top-down” alternative, in which the
set of all markers is iteratively split into subsets, might
be reasonable, but searching over all possible partitions
of a concatenated data set into two subsets would be far
more computationally intensive than the “bottom-up”
approach we have implemented.

Alternatives to the likelihood ratio used as a predic-
tor of congruence can also be imagined. Popular choices
are the Akaike or Bayesian information criteria (AIC or
BIC; Akaike, 1974; Schwarz, 1978). For the branch-length
congruence problem, these options are reasonable alter-
natives to the likelihood ratio. However, this approach
will not work for topological congruence. In AIC, richer
models with more parameters are penalized by subtract-
ing the number of parameters from the log likelihood.
An appropriate penalty for the increase in model rich-
ness from the introduction of separate topologies is not
straightforward.

Finally, although we have refrained from combining
the incongruent sets of proteins identified in this study,
there are methods of combining data that can accommo-
date incongruence in an appropriate way. For instance, a
supernetwork inferred from congruent subsets of mark-
ers could represent their conflicting histories (Huson and
Bryant, 2006). Alternatively, likelihood-based mixture
models can be conceived that would allow simultaneous
estimation of multiple topologies for multiple gene sets
with additional parameters that control the numbers of
topologies estimated and their associated weights. Such
methods will be complex to implement and will be ex-
tremely computationally burdensome but are definitely
worth pursuing in future.

CONCLUSION

In this data-driven age of research, the analysis of large,
multilocus data sets has become popular in phylogenet-
ics. We have developed CONCATERPILLAR, an applica-
tion that assesses both topological and branch length
congruence in such data sets by means of hierarchical
likelihood-ratio tests. Our results with simulated data
demonstrate that our method is highly effective when
the data have evolved according to different underlying
trees, representing scenarios of LGT, paralogy, or lineage
sorting. Similarly, the test for branch-length congruence
effectively recovered clusters of markers simulated ac-
cording to trees with the same branch lengths.

Our results for CONCATERPILLAR applied to the
60 translational proteins are particularly interesting. As
these proteins are essential components of the transla-
tion apparatus of eukaryotes, we did not expect to find
evidence for different evolutionary histories. However,
our results indicate that there are three incongruent sets
of proteins. Although these sets do not necessarily repre-
sent different histories, nor is any one of them necessarily
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representative of the true evolutionary history of these
taxa, the largest set of congruent proteins recovers strong
bootstrap support for five eukaryotic supergroups that
have been proposed on other biological grounds, so it
is likely that much of the structure of this tree is truly
reflective of historical relationships among these groups
of eukaryotes. Furthermore, given our knowledge of the
role of secondary endosymbiosis in the evolution of chro-
malveolates, the position of stramenopiles in the tree
inferred from the set of 15 proteins is also likely to be
biologically meaningful. In contrast, there is little in the
10-protein tree that can be explained by prior biological
knowledge (and indeed, very few of the groups in this
tree that do not appear in the other trees are even reason-
ably well-supported). Consequently, the phylogeny of
this set of proteins is almost certainly affected by system-
atic biases. As with all large-scale data analyses, back-
ground biological knowledge and reasoning are required
for reasonable interpretation of the results.
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